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Abstract
Phoneme-to-audio alignment is the task of synchronizing voice
recordings and their related phonetic transcripts. In this work,
we introduce a new system to forced phonetic alignment with
Recurrent Neural Networks (RNN). With the Connectionist
Temporal Classification (CTC) loss as training objective, and
an additional reconstruction cost, we learn to infer relevant per-
frame phoneme probabilities from which alignment is derived.
The core of the neural architecture is a context-aware attention
mechanism between mel-spectrograms and side information.
We investigate two contexts given by either phoneme sequences
(model PHATT) or spectrograms themselves (model SPATT).
Evaluations show that these models produce precise alignments
for both speaking and singing voice. Best results are obtained
with the model PHATT, which outperforms baseline reference
with an average imprecision of 16.3ms and 29.8ms on speech
and singing, respectively. The model SPATT also appears as
an interesting alternative, capable of aligning longer audio files
without requiring phoneme sequences on small audio segments.
Index Terms: phoneme-to-audio alignment, recurrent neural
network, Connectionist Temporal Classification, voice analysis.

1. Introduction and related work
The general purpose of any alignment system is to determine
a precise mapping between several representations that share
common underlying information. For instance, while audio-
to-score alignment aims to retrieve the start and end times of
each event reported in a music score for a given performance
[1], lyrics-to-audio alignment is focused on the time location of
words pronounced in a recording [2]. In the analysis of speech
and singing voice signals, for which linguistics, phonetics and
pronunciation are important subjects of interest [3], it is also
particularly convenient to have an alignment at the phoneme
level, a task known as phonemes-to-audio alignment [4].

Given an audio file with voice, and a phonetic transcript of
the text contained in it, a forced alignment system is expected
to determine time boundaries for each phoneme automatically.
Until recently, although some alternatives have been proposed
[5], most forced aligners in the literature relied on Hidden
Markov Models - Gaussian Mixture Model (HMM-GMM) to
infer hidden states from likelihood scores derived from features
computed on raw audio or spectral representations [3, 4, 6, 7, 8].

With the advent of deep learning in many fields related
to music and audio data, numerous approaches for achieving
forced alignment with Deep Neural Networks (DNN) have been
reported as a complement to the standard methods. This recent
trend comes with the design of a training procedure allowing
neural models to learn how to predict phonetic sequences from
audio inputs. The predictions can take the form of a phoneme
classification or phonetic probability distribution per time unit,
which are exploitable towards final alignment retrieval.

For such models to be trained and produce high-quality
alignments, a first intuitive strategy is to compare, at each time,
the phoneme predicted by the model to the real phoneme thanks
to the Categorical Cross-Entropy loss function. From this point
of view, the alignment challenge is a classification problem.
Though great performances are to be denoted [9, 10], this calls
for training data for which precise alignment is already known
in advance. It is a major limitation since only few accessible
datasets provide perfectly annotated ground truths.

A second approach makes use of specialized cost function,
the Connectist Temporal Classification (CTC) [11]. CTC has
been mostly used to train Recurrent Neural Networks (RNN)
for sequence transcription [12]. A first attempt to apply this
algorithm to alignment based on a Wav-U-Net revealed itself
successful [13]. However, such a model requires large amount
of data, much more than publicly available datasets provide.

A recent development does not face these shortcomings,
and directly derives alignment from attention weights of an
encoder-decoder that jointly aligns and separates speech [14]. It
achieves state-of-the-art alignment precision, and is competitive
with a reference Kaldi implementation of a Montreal Forced
Alignment (MFA) algorithm [7], making it a strong baseline.
While [14] was exclusively limited to speech, we believe that
a comparison with singing voice is of interest: sung phonemes
may be more challenging to align than spoken ones due to the
larger diversity encountered in musical contexts [15].

In this work, we aim to develop a forced phonetic aligner
suitable for both speaking and singing voice. We propose to
couple the context-aware attention mechanism used in [14], and
defined in [16], with the CTC algorithm as training objective.
We argue that an additional spectral reconstruction loss helps
producing high-quality alignments. After having evaluated our
model with two types of attention context, namely spectral and
phonetic, our results highlight relevant alignment performances.
In the case of phonetic-based attention, we outperform the base-
line reference in terms of mean and median time errors (32.2%
and 15.2% relative gain, respectively) for speech and singing.

Our main contributions are:

• Two methods, based on the same neural architecture, for
exploiting either spectral or phonetic side information
during training and inference for phonetic alignment;

• The integration of a spectral reconstruction cost with the
CTC to ensure that alignment information is taken into
account for the generation of the phonetic posteriogram.

This paper is structured as follows. In section 2, we present
our phonetic aligner by covering the various concepts that are
implicated in its elaboration. Next, section 3 gives an overview
of the experiments to pursue with our newly designed system,
thus leading to our results and further discussions in section 4.
Finally, section 5 summarizes and concludes our investigations.
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2. Phonetic aligner proposal
This section introduces our deep learning-based phonemes-to-
audio aligner. The developed model relies on the CTC loss, a
context-oriented attention mechanism and temporal coherence
reinforcement. Once trained, we use it for alignment retrieval.
These notions are explained in upcoming paragraphs.

2.1. Sequence prediction with CTC

Connectionist Temporal Classification (CTC) is an approach
to train neural networks for tasks involving sequence labeling
and segmentation [11] such as handwriting transcription [17],
speech recognition [18] or audio-based keyword detection [19].
Let T and M denote two integers. Given some alphabet A, an
input representation x = {x(t)}, t ∈ [0, . . . , T − 1] and its
associated transcript y = {y(m)},m ∈ [0, . . . ,M − 1] with
y(m) ∈ A, the CTC algorithm will predict output sequences
ŷ = {ŷ(t)}, t ∈ [0, . . . , T − 1] with ŷ(t) ∈ A∪{ε}. The extra
token ε is referred to as the blank label, and means that there is
no character fromA concretely specified at time t. It is expected
that the output sequence reduces to the target one, i.e. B(ŷ) = y,
where B is an operator merging successive repeated labels then
removing all blanks from ŷ, e.g. B(εaaaεεεbεε) = ab.

As there may exist many sequences ŷ that can reduce to the
ground truth y, a CTC-based neural network is trained to pro-
duce a phonetic posteriogram (per-frame probabilities) P(ŷt|x)
over the set A ∪ {ε} while maximizing the CTC conditional
probability, with respect to the model’s learnable parameters Θ,

P(y|x ; Θ) =
∑

ŷ,B(ŷ)=y

T−1∏
t=0

P(ŷt|x ; Θ) (1)

hence minimizing the negative-log-likelihood loss function

LCTC(Θ) = − log P(y|x ; Θ). (2)

By nature, the CTC loss does not favour any alignment, and may
therefore seem inappropriate for this purpose, yet conclusive
results were obtained for lyrics-to-audio alignment [13, 20]. We
aim to align at the phoneme level, i.e. with higher precision.

2.2. Encodings and attention mechanism

To train the acoustic model on audio data, magnitude log-scaled
mel-spectrograms are computed as input features x and long-
term spectral information is encoded by two recurrent layers,
namely Bidirectional Long Short-Time Memory (Bi-LSTM).
Prior to the encoding itself, convolutional blocks help extracting
relevant features from the spectrogram − and notably creating
a representation that is suitable for our task.

A second encoder sharing the same architecture is used to
process some side information. We investigate two contexts for
this other branch: (1) A model with spectral context, denoted
SPATT, that re-uses the spectrogram as second input to build a
self-spectral attention revealing the relevant spectral segments;
(2) A model with phonetic context, denoted PHATT, using non-
aligned phonetic phrases as second input, that aims to associate
each phoneme with specific spectral regions. These phonetic
sequences (to be aligned) are converted into activation matrices
seen as succession of one-hot vectors over the alphabet A.

Following the implementation of [14, 16], we put forward
a context-oriented attention mechanism. Let ES and EC denote
the spectrogram and side information encodings1, respectively.

1The mechanism accepts any length for the side information since
ES and EC are shaped (T , E) and (T or M , E) for E encoding units.

Figure 1: Overview of our proposed system. Mel-spectrogram
and side information (phonetic/spectral) are encoded, involved
in an attention mechanism and then decoded, resulting in CTC
posteriogram that is expected to allow spectral reconstruction.

Attention weightsW are computed thanks to a learnable dense
layer w, and are turned into a context vector C as below:

W = σ
(
ES(wEC)T

)
=

exp
(
ES(wEC)T

)∑M−1
m=0 exp (ES(wEC)T )

(3)

C =WEC . (4)

All in all, the concatenation [C, ES ] is sent to a CTC decoder,
composed of two Bi-LSTM followed by a dense layer with
softmax activation, leading to probabilities over A ∪ {ε}.
This is summarized on Fig. 1 presenting our system overview.

2.3. Temporal coherence reinforcement

Although a CTC-based network is trained to predict per-frame
phoneme probabilities, it is worth noticing that the CTC loss
is originally a transcription loss in the sense that it only makes
sure that the sequence decoded from probabilities ŷ is close, if
not equal, to the correct one y. As a result, the time locations in
the phonetic posteriogram do not contribute to the loss value
whereas they should, as they directly have an impact on the
alignment quality. To cope with this, and help the model predict
phonemes at their accurate position, we add a supplementary
constraint that consists in reconstructing the input spectrogram
from the CTC predictions, seen as a compressed representation
of input data. To this aim, a spectral decoder composed of two
Bi-LSTM followed by a dense layer with tanh activation is
used. See also on Fig. 1. The inputs to this decoder are the
outputs of the dense layer prior to CTC softmax activation,
without blank. We further argue that computing the spectral
estimate x̂ and training the network to minimize the L2 loss

LREC(Θ) = ||x̂− x||2 (5)

will reinforce temporal coherence in the CTC posteriogram.
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Figure 2: Alignment procedure summary: the trained model
outputs labels (phonemes+blank) probabilities that are used to
create an accumulative cost matrix over time. Alignment can be
retrieved with beam search decoding. Example is singing voice.

2.4. Final alignment retrieval

Once the model is trained to predict relevant, well-localized
probabilities, we can use it to retrieve the phonetic alignment.
First, an accumulative score matrix, denoted α, is computed.
To align the sequence y of length M along T frames, we define
the padded sequence ỹ, which is required to deal with the blank
label intrinsically linked to the CTC. It reads

ỹ = {ε, y(0), ε, . . . , ε, y(m), ε, . . . , ε, y(M − 1), ε} (6)

and constraintsα to be [2M+1, T ]-shaped. The elementα[n, t]
represents the score accumulated by the sub-sequence ỹ0:n at
time t. The only allowed transitions are between two non-blank
labels or between a blank and a non-blank label [21], so α can
be computed efficiently with a dynamic programming technique
resembling Viterbi’s algorithm. The recursion rule is given by

α[n, t] =

(
2∑

p=0

α[n− p, t− 1]
(

1− δp=2
ỹ(n)=ε

))
P[ỹ(n), t]

(7)
where P[ỹ(n), t] is the emission probability for the token ỹ(n)
at time t and δp=2

ỹ(n)=ε is the Kronecker delta returning here 1
when both ỹ(n) = ε and p = 2, and 0 otherwise.

The next step is to get rid of the blank labels to retrieve
a [M,T ]-shaped matrix α. To do so, a simple rule is applied
to distribute all scores related to blanks ε between surrounding
phonemes based on prior odds. For any k such that ỹ(k) = ε,
and for all time frame t, the blank cost α[k, t] is attributed to
previous label cost α[k−1, t] if P[ỹ(k−1), t] > P[ỹ(k+1), t],
otherwise it is attributed to next label cost α[k + 1, t]. The kth
blank can finally be removed from α after this subdivision.

Lastly, we retrieve the best path within our score matrix α
thanks to beam search decoding [22]. We ensure to go through
all of the sequence y in the right order. This gives us the target
alignment. These various steps are illustrated on Fig. 2. Plus,
we encourage reading [21] for more CTC algorithmic details.

3. Experiments
We compare our proposal to the state-of-the-art, attention-based
alignment strategy for speech [14], which also provides data for
the classical MFA algorithm from [7]. The experimental setup
is exposed in this section.

Figure 3: Datasets analysis for phonetic duration in speech and
singing. Silences are not counted. Pauses excluded, TIMIT and
RT feature 187783 and 4768 phonetic utterances, respectively.

3.1. Datasets

To study these aligners and reflect the diversity of voiced
phonemes [3], we consider speech and singing datasets. For
speaking voice, the 5-hour, multi-speaker TIMIT dataset is used
[23]. For singing voice, we use the 1.5-hour French Chanter RT
dataset whose construction is detailed in [24]. These are split in
train, test, and validation sets2. Reference phonetic alignments
are accessible for evaluations. The phonetic alphabet A size is
36 for RT (French) and 45 for TIMIT (English), pause included.

To quantify our temporal precision, we report on Fig. 3
the repartition of phoneme duration. It shows that most (98%)
of the spoken phonemes and half (47%) of the sung ones are
shorter than 200ms. Phonemes in singing are longer and have
higher variance than in speech. The RT singer was asked to sing
slowly and hold long vowels to facilitate the development of a
singing synthesis system [24], hence the bi-modal distribution.

3.2. Implementation details

3.2.1. Input pipeline

All tracks are converted to mono signals, resampled to 16kHz
and cut into excerpts of at least 5s without truncating the last
phoneme. To feed the neural network, log-scaled magnitude
mel-spectrograms are derived from the Short Term Fourier
Transform (STFT) by means of a 128-D mel-filterbank. Each of
them is scaled to the normalized amplitude range [−1, 1]. For
STFT computation, we use Hanning window with size 1024,
FFT size 1024 and hop length 256, which corresponds to frames
of 16ms (at 16kHz) as in the baseline [14]. We also concatenate
its derivatives in time (delta ∆x and delta-delta ∆∆x features)
along depth axis to let convolutional layers exploit temporal
transitions more easily for phonetic boundaries estimation.

3.2.2. Architecture design

All Bi-LSTM layers have 512 units. To extract spectral features,
we use convolutional blocks made up of a 2-D convolutional
layer, preceded by batch normalization, a pooling operation that
reduces only the feature axis by half, and a 25% dropout. Each
block uses convolutions with 3×3 kernel size, ReLU activation,
padding mode same and 16× 2b filters with b ∈ {0, 1}.

For the baseline, we have carefully followed instructions
from original paper [14] for an reimplementation in Tensorflow.
For the sake of fair comparison, and in opposition to their paper,
we do not corrupt audio signals with music accompaniment to
work only with clean data for training, validation and test.

2Splits (%) are 73.4/13.3/13.3 for TIMIT and 68.8/15.6/15.6 for RT.
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SPEAKING VOICE SINGING VOICE
BSLN 22.5 12.2 47.4 30.8
V1 from [14] 22.5 12.9 − −
MFA from [14] 16.3 15.7 − −
OURS − PHATT

λ = 1 67.1 58.4 161.1 82.2
λ = 1e−1 16.3 11.8 29.8 19.5
λ = 1e−2 34.2 24.6 50.8 32.7
λ = 1e−3 59.6 39.1 119.1 53.8

OURS − SPATT
λ = 1 73.4 55.2 134.8 75.0
λ = 1e−1 20.6 13.1 35.8 25.7
λ = 1e−2 40.1 27.5 49.5 36.8
λ = 1e−3 66.5 45.9 123.8 55.3

OURS − NOATT
λ = 1e−1 44.1 27.3 66.7 45.4

MAE MED MAE MED

Table 1: Comparative quantitative results for alignment.
BSLN: our baseline reimplementation; V1 and MFA are
copied from [14]; OURS: our proposal with phonetic
(PHATT), spectral (SPATT) or without (NOATT) attention. The
metrics MAE and MED (see text) are in expressed in ms.

3.3. Training procedure

We use batch size 16 and 500 epochs each composed of
128 training steps. Mel-spectrograms and phoneme sequences
are padded with zeros. Training minimizes the loss function
L(Θ) = LCTC(Θ) + λLREC(Θ) using the ADAM optimizer
with learning rate 1e−4. The impact of hyperparameter λ is
discussed below. Training stops early after 101 consecutive
epochs without validation loss improvement. The learning rate
is halfed after 50 stagnant epochs. All codes are written in
Python/Tensorflow 2.4 based on the CTC-Model from [25].
Training a model on a GeForce GTX 1080 Ti GPU takes 4hours.

4. Results and further works
4.1. Results

The performances of the models are evaluated with respect
to the two main assessment metrics for alignment task [26],
namely Mean Average Error (MAE), which is the average time
imprecision in predictions; and MEDian average error (MED),
which is the median time imprecision in predictions. They are
expressed in milliseconds (ms). The quantitative evaluations for
these metrics on chosen datasets can be found on Table 1.

As stated, the hyperparameter λ is of key importance: it
acts as a trade-off between the two losses from Eq. (2) & (5).
Should λ be too small (or zero), the CTC loss is not sufficiently
constrained and alignment quality deteriorates. Should λ be too
large, the reconstruction cost dominates the CTC loss in which
case the model struggles to converge and degenerates into some
simple spectral Auto-Encoder that does not perform alignment.
It is worth noting that λ = 0.1 works best for all evaluations,
including both databases and types of side information. This
leads us to believe that this setting is not specific to contexts or
data, and therefore is a good default value. These results prove
the usefulness of the reconstruction loss coupled with the CTC
loss for data alignment. For next discussions, we fix λ = 0.1.

4.2. Discussions

Evaluations in Table 1 show that our proposal allows significant
performance improvement when compared to the baseline, and
outperforms it for speech and singing for both MAE and MED.

This means that the alignments produced by our system are
more precise and less prone to cause severe outliers. This holds
true for the two contexts of side information we have studied,
spectral (model SPATT) and phonetic (model PHATT). The
importance of the attention mechanism is noteworthy: trained
without attention, the model NOATT in Table 1 performs poorly.

One can also note that our reimplementation of the baseline
is coherent with the results from original paper, and highlights
to some extent our competitiveness to the MFA for speech.

The best outcomes are obtained when training is enriched
with phonetic transcripts (model PHATT). Significant gains in
performances on MAE (30.6% on speech, 33.8% on singing)
and MED (4.8% on speech, 25.5% on singing) are measured.

The model SPATT might not be as powerful as PHATT; but
has a major benefit to mention. For long audio alignment (e.g.,
entire songs), phonetic transcripts might be available as a whole,
but not for small excerpts (5−10s). It would not be possible to
rely on PHATT, at least not without a pre-segmentation, since
short-term phonetic contexts would not be provided. For such
cases, SPATT remains an interesting, robust alternative.

Another observation is that aligning singing voice is more
challenging than speech. Independently of the aligner, MAE
and MED drastically increase when considering sung phonemes
instead of spoken ones. A reason is the much larger variance of
phonetic length as exposed on Fig. 3. The network has to learn
to recognize short and long time ranges for phonetic utterance,
which is not the case for speech. It is also worth noticing that
RT has been sung with a single pitch point.

4.3. Perspectives

The current study has dealt with clean data and relatively short
audio excerpts. Further work will investigate alignment of
singing voice in musical performances with DALI [27]. This
requires to deal with the problems of background music and
longer audio. Long audio (e.g., audio books synchronization
[28]) is particularly challenging [29, 30] because the memory
consumption prevents from loading the complete audio and text
so that a pre-segmentation of audio with text must be required.

5. Conclusion
In this paper, we have presented a new deep learning-based
phoneme-to-audio alignment system designed to predict per-
frame labels probabilities. To this aim, we have trained deep
recurrent networks to learn from audio data and phonetic or
spectral side information through a context-oriented attention
mechanism. Not only did we take advantage of the CTC loss
to ensure that output odds were consistent with the phonetic
sequence to align, we also put forward a strategy to reinforce
temporal coherence in CTC outputs. Based on a spectral re-
construction constraint, this additional cost guaranteed well-
localized predictions in time. After evaluations, we have shown
that our system was suitable for both speaking and singing
voice. Our model PHATT exploiting phonetic transcripts has
significantly outperformed the baseline reference in terms of
mean and median errors, with an average progress of 23.7%.
We have also proposed an alternative, fully-spectral aligner,
model SPATT, usable when only global sequences are available.
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