
Citation: Doras, G.; Teytaut, Y.;

Roebel, A. A Linear Memory CTC-

Based Algorithm for Text-to-Voice

Alignment of Very Long Audio

Recordings. Appl. Sci. 2023, 13, 1854.

https://doi.org/10.3390/

app13031854

Academic Editor: Andrea Prati

Received: 5 January 2023

Revised: 24 January 2023

Accepted: 25 January 2023

Published: 31 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

A Linear Memory CTC-Based Algorithm for Text-to-Voice
Alignment of Very Long Audio Recordings
Guillaume Doras * , Yann Teytaut * and Axel Roebel *

Analysis/Synthesis Team - STMS UMR 9912, IRCAM, Sorbonne University, CNRS, French Ministry of Culture 1,
Place Igor Stravinsky, 75004 Paris, France

* Correspondence: guillaume.doras@ircam.fr (G.D.); yann.teytaut@ircam.fr (Y.T.); axel.roebel@ircam.fr (A.R.)

Abstract: Synchronisation of a voice recording with the corresponding text is a common task in
speech and music processing, and is used in many practical applications (automatic subtitling,
audio indexing, etc.). A common approach derives a mid-level feature from the audio and finds its
alignment to the text by means of maximizing a similarity measure via Dynamic Time Warping (DTW).
Recently, a Connectionist Temporal Classification (CTC) approach was proposed that directly emits
character probabilities and uses those to find the optimal text-to-voice alignment. While this method
yields promising results, the memory complexity of the optimal alignment search remains quadratic
in input lengths, limiting its application to relatively short recordings. In this work, we describe how
recent improvements brought to the textbook DTW algorithm can be adapted to the CTC context
to achieve linear memory complexity. We then detail our overall solution and demonstrate that it
can align text to several hours of audio with a mean alignment error of 50 ms for speech, and 120 ms
for singing voice, which corresponds to a median alignment error that is below 50 ms for both voice
types. Finally, we evaluate its robustness to transcription errors and different languages.

Keywords: very long audio alignment; connectionist temporal classification; speech alignment;
singing alignment; linear memory requirements

1. Introduction

The text-to-voice alignment problem originated in the late 1970s. Historically, it
emerged in the speech recognition community from the need to automatically segment
and label voice recordings to build large corpora of paired audio and text. It has found
since then several other applications for the general public, e.g., text-based audio indexing,
automatic closed captioning, or karaoke. A wealth of different implementations have been
proposed over the last few decades to address this problem. However, they all follow the
same general two-step principle: (1) a timestamped encoding E of the audio voice recording,
and (2) a forced alignment A mapping this timing information to the ground-truth text, as
depicted on Figure 1.

The sequence alignment problem is not unique to speech processing. Several research
communities were confronted with the same question and have rediscovered simultane-
ously and independently a similar algorithm to find the optimal correspondence between
two sequences and to estimate their homology, e.g., in telecommunications [1], bioinformat-
ics [2], or speech processing [3,4]. As this algorithm relies on dynamic programming (DP),
it was named Dynamic Time Warping (DTW) by the speech recognition community [5].
Besides text-to-voice synchronization, DTW usage then spread to numerous other applica-
tions involving audio sequence alignment, such as melody search [6], score following [7],
audio matching [8], beat tracking [9], or version identification [10], among many others.

Appl. Sci. 2023, 13, 1854. https://doi.org/10.3390/app13031854 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13031854
https://doi.org/10.3390/app13031854
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-8454-1968
https://orcid.org/0000-0002-3093-2760
https://orcid.org/0000-0001-6136-4391
https://doi.org/10.3390/app13031854
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13031854?type=check_update&version=2

Appl. Sci. 2023, 13, 1854 2 of 26

Hello world

0.1 0.2 h
0.2 0.3 e
0.3 0.4 l
0.4 0.5 l
0.5 0.7 o
0.7 0.9 Ø
0.9 1.0 w
1.0 1.2 o
1.2 1.3 r
1.3 1.4 l
1.4 1.5 d

Audio

Transcript

Timestamped
encoding

Aligned transcript

Figure 1. Audio-to-text forced alignment principle: timestamped encoding E of audio inputs followed
by forced alignment Amapping timestamps to text.

The forced alignment step A of text-to-voice synchronization has therefore generally
relied on the original DTW algorithm or one of its variants. The encoding step E , on the
contrary, has been implemented with multiple approaches over the last decades. In the
1980s, pioneering works were limited to short utterance synchronization, extracting signal
processing-based parameters from the audio and using some domain knowledge-based
rules to force-align these parameters to the ground-truth phoneme sequence [11,12].

In the 1990s, the encoding step was leveraging the Automatic Speech Recognition
(ASR) systems available at that time. These ASR systems were generally relying on Hidden
Markov Models (HMMs) to model the sequential structure of the speech. The HMM emis-
sion probabilities were typically represented by mixtures of Gaussians (GMMs) modeling
some spectral observations derived from the audio, e.g., Mel-frequency cepstrum (MFC),
whereas the HMM hidden states represented the corresponding phoneme or grapheme
time series [13,14]. These HMM-based systems were further improved in the 2000s to
specifically address the need to synchronize very long audio recordings [15–22]. Their
usage was also recently extended to lyrics and singing voice synchronization [23].

The success of Deep Neural Networks (DNNs) in many other fields during the 2010s
motivated their progressive adoption in ASR systems. DNNs were first introduced in
hybrid DNN–HMM architectures to address the limitations of GMMs in modeling high-
dimensional data [24]. DNNs were then implemented in end-to-end architectures to
replace HMMs and to overcome the limitations induced by HMM-underlying Markov
assumptions [25]. Along with their ability to model the long-term dependencies in speech,
DNN-based end-to-end systems also greatly simplified the processing pipeline of the earlier
HMM-based approaches, which required complex expert knowledge [26].

Given the proximity between voice recognition and voice alignment problems, the
success of DNN reported in the ASR literature motivated their usage for voice-to-text
synchronization. Early attempts in that direction considered the alignment task as a
frame-wise classification problem and aimed at predicting the correct symbol at each time
step [27,28]. However, the large amounts of paired audio and precisely time-aligned text
required to train these architectures are tedious to collect. Other approaches that could be
trained with more widespread data, such as paired audio and text without precise timing
information, were therefore investigated.

It was, for instance, recently proposed to consider the alignment task as an auxiliary
objective for the source separation problem and to learn the optimal alignment maximising
the separation quality [29,30]. It was also proposed to leverage recent advances made by
ASR systems based on Connectionist Temporal Classification (CTC). The CTC loss was
initially introduced to train Recurrent Neural Networks (RNNs) on unsegmented data [31]
and became ubiquitous in the speech recognition literature [32–37]. Given some audio
inputs, a CTC-based network is trained to output a posteriorgram which predicts at each
time frame the discrete probability distribution over a lexicon of labels, typically graphemes.
While the temporal information contained in the posteriorgram is usually dropped for
speech recognition as such, it can be decoded with a DTW-alike algorithm to obtain a
forced-alignment of the ground-truth text [38,39].

Appl. Sci. 2023, 13, 1854 3 of 26

The possibility offered by CTC-based architectures to transcribe the audio waveform
directly into graphemes in an end-to-end fashion renders this approach particularly appeal-
ing for text to spoken or singing voice synchronization. However, the CTC forced-alignment
step, similar to that of DTW, requires the computation of an alignment path that scales
quadratically in the sequence lengths, both in time and space. This rapidly becomes pro-
hibitive for long audio alignment, a common use case for modern research and consumer
applications. Many optimizations of the DTW algorithm have been proposed in the past to
reduce its complexity, generally at the cost of some approximations. Recently, however, an
exact reformulation of the DTW algorithm scaling linearly in memory was released [40].

In this work, we address the problem of text-to-voice alignment for very long audio
recordings, which is a growing need in the academic field, e.g., to automatically synchronize
large corpora of paired voice and text for downstream tasks, such as voice synthesis. Our
approach involves CTC-based modeling and an adaptation of the linear memory DTW
to the CTC context. It offers several advantages: our end-to-end architecture avoids the
complexity of legacy HMM-based solutions, and our linear memory CTC decoding avoids
the necessity to segment long audio into imprecise shorter chunks before synchronization.

Our contributions are: (1) we introduce an adaptation of the linear memory DTW
to to the CTC context for step A, extending the use of CTC-based algorithms for the
alignment of very long audio recordings; (2) we describe a CTC-based fully-convolutional
neural architecture agnostic to audio duration for step E ; (3) we demonstrate that our
system is able to synchronize several hours of audio with the corresponding text, yielding
a mean absolute alignment error of 50 ms for speech and 120 ms for the singing voice,
which corresponds to a median alignment error that is below 50 ms for both voice types;
(4) we illustrate its robustness against deteriorated transcripts; (5) we demonstrate that,
albeit being trained solely on unsegmented audio and text in English, it achieves similar
performances for many other languages; (6) we compare it to the state-of-the art systems
and demonstrate that our simple end-to-end approach rivals much more complex systems
on publicly available datasets.

The rest of this paper is structured as follows. In Section 2, we briefly describe the
recent research that inspired our present work. In Section 3, we first provide a short
reminder of the textbook DTW algorithm and its linear memory reformulation, and then
describe how it can be adapted to a linear memory CTC forced-alignment algorithm. We
provide the details of our experiments and describe our results in Section 4. We conclude
with our future perspectives.

2. Related Works

In this section, we summarize the recent advances that inspired our present work, i.e.,
the use of a neural CTC acoustic model for the audio timestamped encoding step E , and an
optimized DTW for the alignment step A.

2.1. CTC-Based Modeling for the Encoding Step

In our applicative context, the timestamped encoding E can be implemented as the
output of a CTC-trained neural network trained on audio directly, which represents the
per-frame character emission probabilities—referred to as posteriorgram.

To the best of our knowledge, Stoller et al. [38] were the first to exploit this strategy
when they explicitly leveraged the time dimension of CTC posteriorgrams to align the lyrics
and singing voice with background music. By extracting multi-scale representations from
raw audio samples with a Wav-U-Net architecture [41], trained on a 40k+ song proprietary
dataset, the authors proved the feasibility of aligning polyphonic music with an end-to-end
CTC acoustic prediction framework, and demonstrated the interest of this approach for
text-to-voice alignment in general. For instance, Kurzinger et al. [39] used a CTC-based
neural network originally trained for ASR purposes to segment, at the sentence level, a
large corpus of German speech recordings, and demonstrated that this approach clearly
outperformed HMM-based legacy methods in terms of alignment precision.

Appl. Sci. 2023, 13, 1854 4 of 26

In the same vein, and following the success of their CTC-based model in other
tasks [42,43], Vaglio et al. [44] demonstrated that a plain Convolutional Recurrent Neural
Network (CRNN) could also yield promising performances. Trained with the publicly
available data contained in DALI [45], the authors tackled the issue of voice alignment in a
multilingual context, even for language with almost no training data.

More recently, Teytaut et al. studied the impact of adding additional constraints to
the CTC in order to improve the accuracy of the posteriorgrams. By combining the CTC
loss with a spectral reconstruction cost in an encoder–decoder architecture [46], better
synchronization precision was achieved for clean recordings featuring solo speaking and a
singing voice. This precision at the phonetic level could be used to analyze the temporal
aspects involved in the production strategies of vocal attitudes in expressive speech [47,48].
Further works have proposed other types of regularizations enforcing audio-text monotony
and structural similarity [49], but did not specifically focus on long audio alignments, as
opposed to our present work.

2.2. Optimized DTW for the Alignment Step

When considering the alignment step A, we note that a majority of the approaches
discussed so far rely on Dynamic Time Warping or one of its variants. We briefly introduce
the research dedicated to its optimization.

The textbook DTW algorithm to align two sequences a and b implies a pairwise
sequence element comparison (forward pass) and traces back the optimal alignment path
minimizing the total alignment cost (backward pass). The forward pass computing the
pairwise distance matrix has a quadratic complexity in O(|a||b|) in time and space , which
quickly becomes problematic for many use cases, such as a similar sequence search in large
corpora or long sequence alignment.

In the context of sequence indexing, a common solution to speed up the computation
of the DTW alignment cost was to seek for a cheap-to-compute lower bounding function to
prune unpromising candidates [50–52]. This approach proved its efficiency to mine trillions
of sequences [53], but discards the concept of the alignment path that is required to address
the alignment problem, per se.

A classical approach to speed up the computation of the alignment path—and not
only the alignment cost—is to avoid an exhaustive search among all possible paths, by
restricting the exploration within some boundaries, e.g., a band or a parallelogram around
the diagonal of the pairwise distance matrix [5,54]. This is generally an effective solution,
as extreme warping between sequences is often unlikely, but yields an incorrect result if the
actual alignment lies outside the explored area.

Several global adaptive constraints have thus been proposed to restrict the exploration
area, such as multi-scale alignments where an optimal path is found at a coarse level and is
gradually refined at increasingly accurate resolutions [55–57], or segment-level alignments
that serve to further refine frame-level alignments [58]. Further improvements have been
proposed with local adaptive constraints to restrict the exploration more precisely to the
vicinity of the optimal path, for instance by gradually expanding the current optimal
path via a local greedy search [59,60], or by searching and concatenating overlapping
block sub-alignments [61]. Early abandoning is another adaptive strategy used to prune
unpromising alignment paths when the alignment cost exceeds some threshold [62,63].
These constrained algorithms generally achieve a linear space complexity at the cost of
only providing an approximate solution.

On the contrary, Tralie and Dempsey [40] recently proposed a clever reformulation of
the textbook DTW that is both exact and has linear space complexity. In the next section,
we will detail this algorithm and explain how our own algorithm adapts these ideas to the
CTC context.

Appl. Sci. 2023, 13, 1854 5 of 26

3. Method

In this section, we first present a succinct reminder about the textbook DTW algorithm
and its linear memory version, which will serve as a basis for the rest of the paper. We then
present the Connectionist Temporal Classification (CTC) concepts that are important for
our purpose, and draw a parallel with the textbook DTW algorithm. We finally introduce
our contributions: (1) we describe a linear memory version of the CTC alignment algorithm
that can be used for the very long audio-text forced alignment step A, and (2) we describe
the neural network that we used for the encoding step E .

3.1. The Textbook DTW Alignment Algorithm

We present here a succinct reminder about the textbook DTW algorithm [3–5] to
introduce notations and concepts used throughout this paper.

3.1.1. Definitions

Let A and B denote two feature spaces, and let A∗ and B∗ denote the sets of all
sequences over A and B, respectively. Let x be a sequence, and let |x| denote its length, and
x[1 : n] be the subsequence containing its n first elements.

A notion of the correspondence between the ordered elements of two sequences
a ∈ A∗ and b ∈ B∗ can be depicted by a sequence π of the ordered tuples of a and b
indices:

π = {πk} where πk = (ik, jk) ∈ {1, . . . , |a|} × {1, . . . , |b|} ∀k ∈ {1, . . . , |π|}

π is called a pathway [2], a warping function [5], a warping or alignment path, or simply a
path if it also satisfies some additional constraints:

• Boundaries: π starts and ends at the beginning and end of each sequence, i.e.,:

π1 = (1, 1) and π|π| = (|a|, |b|) (1)

• Monotonicity: π does not go backward, i.e.,:

ik−1 ≤ ik and jk−1 ≤ jk ∀k ∈ {1, . . . , |π|} (2)

The Figure 2 illustrates these constraints:

Figure 2. A monotonically evolving alignment path between two sequences a and b.

The transitions between successive points on path π are typically limited to a set of
permitted gaps. For instance, the textbook alignment algorithm imposes a maximum shift
of one element on both axis, i.e.,:

πk − πk−1 ∈ {(1, 1), (1, 0), (0, 1)} (3)

The Figure 3 illustrates the textbook-permitted transitions.

Appl. Sci. 2023, 13, 1854 6 of 26

 indices

 in
di

ce
s

Figure 3. Textbook DTW alignment path-permitted transitions

Let S : A× B → R denote a similarity measure between elements of A and B (the
textbook DTW uses a cost measure, but we use here a similarity measure to draw the parallel
with the CTC alignment below). Aligning the sequences a ∈ A∗ and b ∈ B∗ consists in
finding the path π∗ that maximises the sum of the similarity measures of its elements:

π∗ , arg max
π

∑
(i,j)∈π

S(ai, bj) (4)

A∗ , ∑
(i,j)∈π∗

S(ai, bj) (5)

π∗ is called the optimal path, and A∗ is called the optimal alignment measure.

3.1.2. π∗ Computation via Dynamic Programming

Solving Equation (4) directly is usually intractable, as there are too many possible
paths between the two sequences. It is, however, possible to compute it indirectly, noticing
that the optimal similarity measure between two sequences can be obtained recursively,
considering the similarity measure between the two sequence prefixes.

As depicted on Figure 3, if the optimal path between two sequences passes through
the point (i, j), it necessarily passes through one of the points (i − 1, j− 1), (i, j− 1), or
(i− 1, j). It is thus enough to know the optimal similarity measure on these 3 predecessors
to deduce the optimal similarity measure on the point (i, j).

Let α(i, j) denote the optimal alignment similarity between the prefix a[1 : i] and the
prefix b[1 : j], and assume that α(i− 1, j− 1), α(i− 1, j), and α(i, j− 1) are already known.
Given the permitted path transitions depicted on Figure 3, it is straightforward to see that:

α(i, j) = S(ai, bj) + max

α(i− 1, j− 1)
α(i, j− 1)
α(i− 1, j)

∀(i, j) ∈ {2, . . . , |a|} × {2, . . . , |b|} (6)

The initialisation step is given by:{
α(i, 1) = ∑i

k=1 S(a1, bk)

α(1, j) = ∑
j
k=1 S(ak, b1)

∀(i, j) ∈ {1, . . . , |a|} × {1, . . . , |b|} (7)

The optimal global alignment similarity A∗ = α(|a|, |b|) can then be computed recur-
sively using Equations (6) and (7), accumulating at each step the similarity measure of the
best predecessor optimal path (forward pass). The optimal path π∗ can then be traced back
using the sequence of optimal transitions retained in the forward pass (backward pass).

The computation of the matrix α during the forward pass has a computational and
memory complexity that scales quadratically in O(|a||b|). This rapidly becomes problem-
atic for long sequences.

Appl. Sci. 2023, 13, 1854 7 of 26

3.2. Linear Memory DTW Algorithm

Tralie and Dempsey [40] proposed an algorithm to compute A∗ and π∗ exactly, but
with a space complexity that scales in O(min(|a|, |b|)). In this subsection, we summarize
the main ideas developed by Tralie and Dempsey that are important for our purpose, and
refer the interested reader to the original paper for the detailed description of the algorithm.

3.2.1. Principle

The algorithm proposed by Tralie and Dempsey is based on a divide-and-conquer
strategy. The idea is twofold: (1) search some points that belong to the optimal path without
computing the entire optimal path, as in the textbook DTW algorithm, and (2) search the optimal
path between these points, called pivots, using the textbook DTW algorithm. The memory
required to compute the optimal path between the pivots can be reduced to some desired
threshold by increasing the number of pivots P. The complete optimal path π∗ is then the
concatenation of the P + 1 optimal paths π∗p between the P pivots, as depicted on Figure 4.

*

pivot 1

pivot

pivot

*

*

*

*

Figure 4. Computation of the optimal path between pivots with the textbook alignment algorithm.

The problem is thus reduced to a pivot search with linear memory requirements.

3.2.2. Pivot Search

Let K = |a|+ |b| − 1 denote the number of diagonals with slope −1 of the α matrix
(more precisely, anti-diagonals, but we use the term diagonal interchangeably in this sense
for brevity). Let dk denote the values of the kth diagonal of the α matrix, as depicted in
Figure 5.

 in
di

ce
s

 indices

Figure 5. At least one point of the optimal path also lies on any pair of diagonals dk and dk−1.

Given the permitted transitions, it is straightforward to observe that we need two
diagonals to be sure that at least one point of these two diagonals also lies on the optimal

Appl. Sci. 2023, 13, 1854 8 of 26

path. Therefore, for a given k, there is at least one point on the pair of diagonals dk and
dk−1 that also lies on the optimal path and that can be used as a pivot.

3.2.3. Pivot Search on dk and dk−1

The point on dk or dk−1 with the maximal alignment measure only reflects the local
optimal alignment between the corresponding prefixes of sequences a and b, not between
the entire sequences a and b. This point is thus not necessarily on the optimal path.

Let aR and bR denote the sequences a and b taken in the reversed order, and let αR(i, j)
denote the alignment measure between the prefixes aR[1 : i] and bR[1 : j]. Tralie and
Dempsey demonstrated that the optimal alignment measure A∗ of Equation (5) can be
re-formulated as:

A∗ = α(i, j) + αR(|a| − i + 1, |b| − j + 1)− S(ai, bj) ∀(i, j) ∈ π∗ (8)

In other terms, for any point (i, j) on the optimal path, the global optimal alignment measure
between a and b is equal to the alignment measure from (1, 1) to this point (i, j), plus the
alignment measure in reversed order from (|a|, |b|) to this point (i, j), minus the similarity
measure at (i, j), otherwise counted twice.

For a given k, there is at least one point on the pair of diagonals dk or dk−1 that also
lies on the optimal path and that can be used as a pivot: it is the point (i, j)∗ maximised in
the right hand side of Equation (8), by definition of the optimal alignment measure:

(i, j)∗ = arg max
(i,j)∈dk∪dk−1

(α(i, j) + αR(|a| − i + 1, |b| − j + 1)− S(ai, bj) (9)

To compute the right hand side of Equation (8), for all points belonging to dk and
dk−1, let dk

R denote the kth diagonal of the αR matrix. Importantly, note that the diagonal dk

(respecting dk−1) and dK−k+1
R (respecting dK−k+2

R) overlap, as depicted on Figure 6. For
a given k, the computation of the diagonals dk, dk−1 in a forward direction, and dK−k+1

R
and dK−k+2

R in a backward direction is therefore enough to find the corresponding pivot.

diagonals
forward

diagonals
backward

*

pivot

Figure 6. Pivot search given dk, dk−1, dK−k+1
R , and dK−k+2

R .

3.2.4. Diagonal Computation with Linear Memory Complexity

Tralie and Dempsey proposed to compute dk recursively, noticing that Equation (6) can
be computed recursively diagonal-wise, instead of row- and column-wise. The permitted
transitions depicted on Figure 3 are demonstrated for the diagonal-wise computation on
Figure 5. It is straightforward to observe that dk can be computed knowing dk−1 and dk−2.
The recurrence rule in Equation (6) can be rewritten as:

α(i, j) = S(ai, bj) + max

α(i− 1, j− 1)
α(i, j− 1)
α(i− 1, j)

∀(i, j) ∈ dk, ∀k ∈ {3, . . . , K} (10)

Appl. Sci. 2023, 13, 1854 9 of 26

The initialisation step becomes:{
d1 = [S(a1, b1)]

d2 = [S(a2, b1) + d1[0],S(a1, b2) + d1[0]]
(11)

The key idea is that once dk as been computed, only the values of dk and dk−1

are needed to compute the next diagonal dk+1, and dk−2 can be dropped. From an
implementation perspective, each diagonal memory buffer pointer is shifted circularly at
each step (dk−2 ← dk−1, dk−1 ← dk, dk ← dk−2). Only three diagonal memory buffers are
thus necessary to compute all diagonals. As a diagonal has a maximal length of min(|a|, |b|),
the linear memory requirement of this recursion scales linearly in O(min(|a|, |b|)).

The same reasoning applies to compute dk
R recursively diagonal-wise.

3.3. The CTC Alignment Algorithm

The concept of the Connectionist Temporal Classification (CTC) was first developed by
Graves et al. [31] to train a neural network for the task of labelling unsegmented data. In
this subsection, we summarize the main ideas developed by Graves et al. that are important
for our purpose and we refer the interested reader to the original paper for the detailed
description of the CTC algorithm. We then describe how CTC and DTW are related.

3.3.1. Definitions

Let L denote a finite alphabet of labels, and L∗ denote the set of label sequences,
called labellings. We also define Lε = L ∪ {ε}, where ε is a blank label, and let L∗ε denote
the set of sequences of labels and blanks, subsequently called the labelling extension or
simply extensions.

LetM : LT
ε 7→ L≤T denote the many-to-one function mapping different extensions

of length T to a single labelling of length ≤ T by removing the successive duplicated
labels and blanks. For instance, the following different extensions are mapped to the
same labelling:

hεeeεlεllo

hheeelεloε

εεhelεlooo

 M−→ hello

A connectionist temporal classifier (CTC) is a neural network whose input is a feature
sequence x, and whose output p is a |Lε| × T tensor, called a posteriorgram. The last layer is a
softmax layer applied on the first dimension; thus, each timeframe at instant t is interpreted
as the probability mass function of the label discrete probability distribution over Lε. More
precisely, if we denote p(k, t|x), the output corresponding to the kth label at time t, p(k, t|x)
represents the probability of observing label k at time t, given the input sequence x.

A posteriorgram thus defines a distribution over the set of possible labelling extensions
of length T, as visualized on Figure 7. The conditional probability of a given labelling
extension b ∈ LT

ε is thus:

p(b|x) =
T

∏
t=1

p(bt, t|x) (12)

The conditional probability of any labelling of l ∈ L≤T is thus the sum of the probabil-
ity of all its corresponding extensions:

p(l|x) = ∑
b∈M−1(l)

p(b|x) (13)

A CTC network is trained to find the most likely labelling l∗ ∈ L≤T , maximising
Equation (13):

l∗ = arg max
l∈L≤T

p(l|x) (14)

Appl. Sci. 2023, 13, 1854 10 of 26

The objective function of Equation (13), called the CTC loss, is usually intractable in its
direct form, because a labelling has typically too many extensions. The idea proposed by
Graves et al. was to compute the probability in Equation (13) recursively, similarly to what
was conducted with the alignment measure of Equation (5).

00:00 00:05 00:10 00:15
Time (mm:ss)

a
b
c
d
e
f
g
h
i
j
k
l

m
n
o
p
q
r
s
t
u
v
w
x
y
z
ø

Ch
ar

ac
te

rs

Figure 7. The posteriorgram of the first sentence of chapter 10 of “The problems of philosophy”, by B.
Russell. Audio publicly available on Librivox. See Section 4.2 for details.

Consider the first t− 1 labels in b. By definition of the extensions, there are different
possibilities for the next label, depending on whether the last one is blank or non-blank:

• If it is a blank label ε, the next label can be ε or the next non-blank label ls.
• If it is a non-blank label ls−1, the next label can either be the same label ls−1, the blank

label ε, or the next label, ls, if ls−1 6= ls.

These permitted transitions are depicted in the Figure 8.

labelling extension indices

la
be

llin
g

 in
di

ce
s

Figure 8. CTC labelling-permitted extensions

The trick proposed by Graves et al. to account for transitions to and from ε in Figure 8
was to consider a new sequence a obtained interleaving ε between each label pair of l, and
adding ε at the beginning and the end. Consequently, |a| = 2|l|+ 1, and if we let i denote
the index of a, i = 2s, as depicted in Figure 9.

Appl. Sci. 2023, 13, 1854 11 of 26

labelling extension indices

in
te

rle
av

ed
 la

be
llin

g
 in

di
ce

s

Figure 9. CTC path-permitted transitions

3.3.2. p(l|x) Computation via Dynamic Programming

The reasoning is similar to that followed to obtain the recurrence equation, Equation (6).
As shown on Figure 9, if the optimal path between two sequences passes through the point
(i, t), it necessarily passes through one of the points (i− 2, t− 1), (i− 1, t− 1), or (i, t− 1).
It is thus enough to know the probability of these 3 predecessor to deduce the probability
on the point (i, j).

Let α(i, t) denote the total probability to have the prefix a1:i corresponding to the prefix
b1:t, and assume that α(i− 2, t− 1), α(i− 1, t− 1), and α(i, t− 1) are already known. Given
the permitted path transitions depicted on Figure 9, it is straightforward to observe that:

α(i, t) =

{
[α(i, t− 1) + α(i− 1, t− 1)]p(ai, t) if ai = ε or ai = ai−2

[α(i, t− 1) + α(i− 1, t− 1) + α(i− 2, t− 1)]p(ai, t) otherwise

∀(i, t) ∈ {3 : 2|l|+ 1} × {2 : T}
(15)

The initialisation step is given by:{
α(0, t) = 0 ∀t ≥ 0
α(i, 0) = 0 ∀i ≥ 0

(16)

Finally, an extension can terminate with ε or the last label l|l|; thus, the probability
p(l|x) is the sum of the total probability of a with or without the last ε:

p(l|x) = α(|a| − 1, T) + α(|a|, T) (17)

In their seminal paper, Graves et al. introduced α to compute p(l|x), i.e., the CTC loss
of Equation (13), with the objective to differentiate it with respect to the network weight for
back-propagation training. For our present purpose, it is enough to compute α. We refer
the interested reader to the original paper for details about CTC loss differentiation.

3.3.3. CTC-Forced Alignment

The matrix α in Equation (15) is computed over all possible paths π ∈ M−1(l),
because it is used to compute the CTC loss (see Equation (17) and Equation (13)). In the
CTC-forced alignment scenario, the labelling l is given, and we search for an optimal
π∗ ∈ LT

ε , maximising the probability p(l|x), as in the textbook DTW scenario.

Appl. Sci. 2023, 13, 1854 12 of 26

The Equation (15) is thus slightly modified, so that only the predecessor path with the
maximal probability is considered at each step, and becomes:

α(i, t) =

max

{
α(i, t− 1)
α(i− 1, t− 1)

p(ai, t) if ai = ε or ai = ai−2

max

α(i, t− 1)
α(i− 1, t− 1)
α(i− 2, t− 1)

p(ai, t) otherwise

∀(i, t) ∈ {3 : 2|l|+ 1} × {2 : T}

(18)

The probability p(l|x) = α(|a| − 1, T) + α(|a|, T) can then be computed recursively us-
ing Equations (16) and (18), accumulating at each step the probability of the most probable
predecessor path (forward pass). The optimal path π∗ can then be traced back using the
sequence of optimal transitions retained in the forward pass (backward pass).

Similarly to the textbook DTW algorithm, the computation of the matrix α in a CTC
context given by Equation (18) during the forward pass has a computational and memory
complexity that scales quadratically in O(|a||b|), i.e., O(|l|T).

3.4. Linear Memory CTC Alignment

In this subsection, we present our adaptation of the linear memory DTW algorithm
to the CTC context. The divide-and-conquer strategy remains the same: search for pivots
and compute the optimal path between pivots with the quadratic CTC-decoding algorithm.
Only the aspects related to the permitted transitions have to be adapted.

3.4.1. Pivot Search

The pivot search in a CTC context is directly adapted from the textbook DTW context,
taking into account the CTC permitted transitions depicted on Figure 8, and shown for the
diagonal-wise computation in Figure 10.

 in
di

ce
s

 indices

Figure 10. At least one point of the optimal path also lies on any triplet of diagonals dk, dk−1, dk−2.

Given the permitted transitions, it is straightforward to observe that we need three
diagonals to be sure that at least one point of these three diagonals also lies on the optimal
path. Therefore, for a given k, there is at least one point on the triplet of diagonals dk, dk−1,
and dk−2 that also lies on the optimal path and that can be used as a pivot.

Appl. Sci. 2023, 13, 1854 13 of 26

3.4.2. Pivot Search on dk, dk−1, and dk−2

The same reasoning described for the DTW context applies to the CTC context. In
particular, the Equation (8) remains valid in a CTC context, replacing the similarity measure
with log-probability:

log p(l|x) = log α(i, t) + log αR(|a| − i + 1, T − t + 1)− log p(i, t) ∀(i, j) ∈ π∗ (19)

For a given k, there is at least one point on the triplet of diagonals dk, dk−1, or dk−2 that
also lies on the optimal path and that can be used as pivot: it is the point (i, j)∗ maximising
Equation (19) on the right hand side, by definition of the optimal alignment measure:

(i, t)∗ = arg max
(i,t)∈dk∪dk−1∪dk−2

log α(i, t) + log αR(|a| − i + 1, T − t + 1)− log p(i, t) (20)

For a given k, the computation of the diagonals dk, dk−1, and dk−2 in a forward
direction, and of dK−k+1

R , dK−k+2
R , and dK−k+3

R in a backward direction, is therefore enough
to find the corresponding pivot.

3.4.3. α and αR Computation Diagonal-Wise

Similarly to the textbook DTW case, the Equation (15) can be computed recursively
diagonal-wise, instead of row- and column-wise, and it is straightforward to observe from
Figure 10 that the values of dk can be directly computed given the values of dk−1, dk−2,
and dk−3.

The recurrence rule in Equation (15) can be rewritten as:

α(i, t) =

max

{
α(i, t− 1)
α(i− 1, t− 1)

p(ai, t) if ai = ε or ai = ai−2

max

α(i, t− 1)
α(i− 1, t− 1)
α(i− 2, t− 1)

p(ai, t) otherwise

∀(i, t) ∈ dk, ∀k ∈ {4 : K}

(21)

and the initialisation step Equation (16) becomes:
d1 = [p(ε, 1)]
d2 = [p(l1, 1), p(ε, 1)p(ε, 2)]
d3 = [0, max{d1[1], d2[2]}p(l1, 2), p(ε, 1)p(ε, 2)p(ε, 3)]

(22)

Similarly to the textbook DTW case, once dk has been computed, only the values
of dk, dk−1, and dk−2 are needed to compute the next diagonal dk+1, and dk−3 can be
dropped. Using the memory buffer circular shift already described, the requirement of this
recursion scales linearly in O(min(|a|, T). In the case of an audio to text alignment, there
are generally much less labels than posteriorgram frames, i.e., |a| << T). The memory
requirement of the algorithm therefore scales linearly in O(|a|), i.e., O(|l|).

The same reasoning applies to compute dk
R recursively diagonal-wise.

3.5. Neural Architecture

In this subsection, we describe the neural network trained with a CTC loss implement-
ing the encoding step E , depicted in Figure 1.

3.5.1. Inputs

The network takes as inputs normalized log-mel-spectrograms X ∈ [0, 1]T×F×1 that
are derived from the audio. First, all audio data are resampled to 16 kHz and processed by

Appl. Sci. 2023, 13, 1854 14 of 26

computing a 1024-bin Fast Fourier Transform on successive 1024-long Hanning windows
shifted every 512 samples. Therefore, each of the T spectrogram frames has a duration of
32ms. The linear frequency scale is compressed into F = 128 Mel bins.

3.5.2. Architecture

Our model is depicted on Figure 11. It contains a succession of 8 convolutional
blocks. Each block contains 2 sub-blocks, composed of the following layers: batch nor-
malization, 2D-convolution with [3× 3] kernels and same padding, batch normalization,
ReLU activation, and 20% dropout. No pooling is used. In each block, the first sub-block
convolution uses [1× 1] stride, but the second one uses a [1× 2] stride, hence halving
the number of bins on the frequency axis. Each block increases the number of filters
E ∈ {16, 32, 64, 128, 256, 512, 1024, 1024}. In total, the model has thus 16 convolutional
layers, but changes the number of frequency bins and channels every two layers only.

Convolutional Block (x8)

Conv.
sub-block
kernel 3x3
strides 1x1

Conv.
Sub-block
kernel 3x3
strides 1x2

BN Conv
2D BN ReLU Dropout

BN Conv
2D

log mel-spec

final feature map

posteriorgramaudio

Convolutional sub-block

Figure 11. Fully convolutional neural network generating posteriorgram from log-mel spectrograms.

Note that the global receptive field of the 16 convolutional layers is about 1 s. Therefore,
the model can be trained on audio excerpts with durations of several seconds (typically
between 10–20 s), but can be used in inference on several hours of audio thanks to its fully
convolutional architecture.

3.5.3. Output

The resulting feature map, which is an element of RT×1×E with E = 1024, is finally
turned into the posteriorgram P ∈ [0, 1]T×1×|Lε | thanks to a final batch normalization
and 2D-convolution. A softmax activation is applied to obtain the per-frame probability
distributions over the labels.

In this work, we considered an alignment at the word level, i.e., subsequences of
characters separated by the space symbol ∅. We therefore defined the alphabet of labels L
to include the characters [a–z] and the space symbol ∅. The start index of each word in the
posteriorgram is thus given by the index t of the first non-space label directly following a
space label. The actual timestamp of each word can then easily be deduced knowing the
duration of each posteriorgram frame.

4. Experiments and Results

In this section, we present our experiments both for spoken and singing voice align-
ment. We first provide the model training details, then present the corpora that we built to
evaluate our system performances, and the standard metrics that we report [64]. We then
present our results on very long audio alignment tasks, and investigate the robustness of
the system against corrupted reference text corruption and multiple languages. We finally
compare our results to current state-of-the-art algorithms.

Appl. Sci. 2023, 13, 1854 15 of 26

4.1. Model Training

We conducted two series of experiments, one for speech and the other for singing
voice. We used the same model architecture, defined as Section 3.5, for both series.

4.1.1. Speech

We used the train-clean-100, train-clean-360, and train-other-500 sets of Lib-
rispeech (https://www.openslr.org/12 (accessed on 31 January 2023)) for training, and
the dev-clean set for evaluation. The model was trained during 50 epochs via a classical
CTC loss, Adam optimizer, initial learning rate of 1× 10−4 with 5 epochs of warm up,
and an exponential decay with a factor of 0.9 each time the loss did not decrease on the
evaluation set for 2 epochs after the warm up. We used a batch size of 32 × 4 on 4 GPUs
Tesla V100-SXM2-32GB. The training lasted roughly 16 h.

4.1.2. Singing voice

We used a 90-10 split of the DALI dataset (https://github.com/gabolsgabs/DALI
(accessed on 31 January 2023)) for training and evaluation. The model was trained during
200 epochs (with 512 steps per epoch) via the classical CTC loss, Adam optimizer, and
initial learning rate of 1× 10−4 that is reduced by a factor of 0.9 each time the loss did not
decrease on the evaluation set for 2 epochs. We used a batch size of 16 on 1 GPUs NVIDIA
GeForce GTW 1080 Ti with 12 MB. The training lasted roughly 10 h.

4.2. Reference Corpora

There is no publicly available corpora to assess the performances of systems addressing
the very long audio alignment task. Therefore, we assembled such corpora for the spoken
and singing voice, and released them publicly (https://ircam-anasynth.github.io/papers/
2023/a-linear-memory-ctc-based-algorithm-for-text-to-voice-alignment-of-very-long-au
dio-recordings (accessed on 31 January 2023)). We encourage the community to use them.

4.2.1. Speech

For speech, we manually annotated the audio recording of a whole chapter of a
publicly available audiobook. We choose the chapter 10 of The Problems of Philosophy,
by B. Russell (https://librivox.org/the-problems-of-philosophy-by-bertrand-russell-2/
(accessed on 31 January 2023)). This audiobook does not belong to the Librispeech’s list
of books, and its reader does not belong to the Librispeech’s list of readers either (https:
//www.openslr.org/resources/12/raw-metadata.tar.gz (accessed on 31 January 2023)).
The chapter 10 contains exactly 100 sentences and 2672 words, and the corresponding
audio has a duration of 21:05 (MM:SS). The other chapters were kept for our experiments
(see below).

We first removed from the audio the Librivox preamble with the title and copyright
information. Then, we performed a first alignment of the audio with the available text with
our algorithm, which we used as a starting point to manually and precisely align each word
to the audio. During the alignment process, we corrected a few inconsistencies between the
recording and the transcription, so that text and audio match exactly. The alignment was
conducted by adjusting the markers for the start of each word. We used the spectrogram
representation to precisely align the start of the words with the corresponding onsets. In
the following, we will refer to this spoken voice reference corpus as “Chapter 10”.

4.2.2. Singing Voice

For singing, we leveraged the available annotations of the DALI dataset, in which all
of the alignments have already been annotated at the word level [45]. We selected 150 songs
that were not used during our model training, and we gathered a playlist containing 50
of these songs. We simply concatenated both the audio and the corresponding annotated
lyrics available in DALI. The playlist contains 18,094 words, and the corresponding audio

https://www.openslr.org/12
https://github.com/gabolsgabs/DALI
https://ircam-anasynth.github.io/papers/2023/a-linear-memory-ctc-based-algorithm-for-text-to-voice-alignment-of-very-long-audio-recordings
https://ircam-anasynth.github.io/papers/2023/a-linear-memory-ctc-based-algorithm-for-text-to-voice-alignment-of-very-long-audio-recordings
https://ircam-anasynth.github.io/papers/2023/a-linear-memory-ctc-based-algorithm-for-text-to-voice-alignment-of-very-long-audio-recordings
https://librivox.org/the-problems-of-philosophy-by-bertrand-russell-2/
https://www.openslr.org/resources/12/raw-metadata.tar.gz
https://www.openslr.org/resources/12/raw-metadata.tar.gz

Appl. Sci. 2023, 13, 1854 16 of 26

has a duration of 2:50:24 (HH:MM:SS). The other 100 songs were kept for our experiments
(see below).

In the following, we will refer to this singing voice reference corpus as “Playlist 50”.

4.3. Evaluation Metrics

In order to evaluate the performances of our models, we compute several metrics
presented below. Note that we only consider the word onsets as decision boundaries, i.e.,
we do not compute errors neither on space (character ∅) onsets/offsets nor word offsets.

The Mean Absolute Alignment Error (MAAE) is the most used metric in alignment
evaluations. It reports the average value of all Absolute Alignment Errors (AAE), that
measure the absolute difference between the predicted and true times of each word onset.

The Quantile N (QN%) metric reports, for a fixed N ∈ [0, 100], the Nth quantile of
Absolute Alignment Error (AAE) over all word onsets, indicating that N% of the AAE are
below the value QN%. In opposition to the MAAE, this metric is insensitive to outliers. In
our evaluations, we will compute the N = 50 (median AAE), N = 95, and N = 99 quantiles.

The Percentage of Correct Onsets (PCO) metric measures the percentage of onsets that
can be considered correctly aligned. A threshold of 300 ms is commonly admitted and
chosen by the community for the misaligned/well-aligned binary decision [44,64], which
we choose as well.

4.4. Baseline Results

We first evaluated the performances of our speech and singing voice alignment models.
The Absolute Alignment Error (AAE) obtained on each words of the reference corpus has
been computed, and the distribution is shown in Figure 12.

0.0 0.1 0.2 0.3 0.4 0.5
Absolute alignment error (in sec.)

M
ea

n=
0.

05
1s

M
ed

ia
n=

0.
04

6s

95
%

=0
.1

18
s

99
%

=0
.1

45
s

(a)

0.0 0.1 0.2 0.3 0.4 0.5
Absolute alignment error (in sec.)

M
ea

n=
0.

12
0s

M
ed

ia
n=

0.
04

0s

95
%

=0
.3

00
s

(b)
Figure 12. Absolute alignment error distribution. (a) Speech (Chapter 10); (b) Singing (Playlist 50).

In Figure 12a, the AAE distribution for speech is shown. The mean of AAE (MAAE) is
of 46ms, close to the median (51ms). Even the most severe outliers (quantiles 95% and 99%)
remain below 150 ms. The Percentage of Correct Onsets (PCO) is 100%, as there is not a
single AAE value greater than 300 ms.

The AAE distribution for the singing voice is shown in Figure 12b. The mean of the
AAE (MAAE) is 120 ms and is therefore three times higher than for speech. This is clearly
due to the more challenging context (i.e., singing word recognition, longer pauses, and
musical accompaniment) that leads to extreme outliers, with some AAE even greater than
1.2 s, which naturally impact the mean value. However, the median (around 40 ms) remains
in the same order of magnitude as the one reported for speech. The Percentage of Correct
Onsets (PCO) is 95%.

Appl. Sci. 2023, 13, 1854 17 of 26

The MAAE obtained for the speech and singing voice will serve as a comparison
baseline in the following experiments.

4.5. Effect of Audio Duration and Number of Words on Performances

In this section, we investigate the effect of the longer audio–text pair on the baseline
alignment accuracy. This is where we explicitly tackle the task of very long audio-to-text
alignment at the word level.

For speech, we added the three chapters before and/or after the reference Chapter
10 to produce longer data. We thus performed the alignment between the audio and the
corresponding text for Chapters 7–10, Chapters 10–13, and Chapters 7–13. For the singing
voice, we added 50 songs before and/or after the Playlist 50. We thus performed the
alignment between the audio and the corresponding lyrics for up to 150 songs.

We computed the alignment on a single Intel(R) Xeon(R) Gold 5118 CPU @ 2.30GHz
on a server with 131.6 GB RAM. We rely on the linear memory-forced alignment that we
presented in Section 3.4 to deal with long audio-text context. We systematically report the
number of pivots that we use.

We computed the AAE for Chapter 10 and Playlist 50 for each case, taking the offsets
incurred by the other chapters/songs. The results are shown in Tables 1 and 2.

Table 1. Absolute alignment error on Chapter 10 for alignments of several chapters.

Chapter 10 AAE

Chapters Duration
(hh:mm:ss) # Words # Pivots MAAE [ms] Q50% [ms] Q95% [ms] Q99% [ms] PCO [%]

10 (baseline) 00:20:26 2672 0 51 46 118 145 100
7–10 01:23:25 11,322 4 52 46 117 147 100
10–13 01:17:36 10,762 4 51 46 117 147 100
7–13 02:20:35 19,411 6 52 46 118 147 100

Table 2. Absolute alignment error on Playlist 50 (P50) for alignments with 50 to 100 extra songs.

Playlist 50 AAE

Tracks Duration
(hh:mm:ss) # Words # Pivots MAAE [ms] Q50% [ms] Q95% [ms] Q99% [ms] PCO [%]

P50 (baseline) 02:51:43 18,904 8 120 40 300 1221 94.9
50 + P50 05:34:32 34,990 12 121 40 302 1223 94.9
P50 + 50 05:29:53 34,261 12 121 40 302 1222 94.8
50 + P50 + 50 08:12:42 51,157 16 122 42 302 1223 94.7

These results demonstrate that the alignment error remains remarkably stable, both
for speech and the singing voice, even when preceded and/or followed by several extra
hours of audio and the corresponding transcripts. This indicates that the system is able to
precisely align several hours of audio with the corresponding text and with the same level
of accuracy.

The encoding module is insensitive to increasing audio duration thanks to its fully
convolutional architecture. The forced-alignment module is also insensitive to increasing
audio duration and corresponding transcript length thanks to the use of pivots.

4.6. Effect of Text Transcription Errors on Performances

In practice, audio transcriptions typically contain errors. For instance, words can
contain typos, i.e., one or several characters might have been added, removed, or altered,
or entire words could be added or removed. In this section„ we investigate the effect of
transcription errors on the alignment accuracy obtained for Chapter 10 and Playlist 50.

Appl. Sci. 2023, 13, 1854 18 of 26

4.6.1. Effect of Replaced Characters

We replace p% of the characters uniformly at random in the text of Chapter 10 and
Playlist 50, leaving the space characters untouched so the number of words remains the
same. The new characters are sampled uniformly at random in the [a–z] letters. We perform
the alignment of the altered text again with the original audio posteriorgram (which is not
impacted by transcript alterations).

The alignment error for speech is shown on Figure 13a. It remains remarkably stable
around the baseline up to 50% of replaced characters. The error even remains under the
200 ms error for up to 80% of substitutions, but dramatically rises after that. The system
is thus able to compensate for transcription errors, as long as it obtains enough correct
anchorage characters.

The alignment error for the singing voice is shown on Figure 13b. It increases much
faster than for speech, even for a small percentage of replaced characters: due to the
presence of musical accompaniment, the posteriorgram exhibits less clear-cut character
probabilities, which causes the correct anchor characters to be more easily confused with
wrong characters and the optimal alignment path to diverge faster.

0 20 40 60 80 100
Proportion of replaced characters (in %).

0

100

200

300

400

500

600

M
ea

n
ab

so
lu

te
 a

lig
nm

en
t e

rro
r (

in
 se

c.
)

Baseline=51.490s

(a)

0 20 40 60 80 100
Proportion of replaced characters (in %).

0

100

200

300

400

500

600

M
ea

n
ab

so
lu

te
 a

lig
nm

en
t e

rro
r (

in
 se

c.
)

Baseline=119.900s

(b)
Figure 13. Mean absolute alignment Error for different percentages of replaced characters. (a) Speech
(Chapter 10); (b) Singing (Playlist 50).

4.6.2. Effect of Added/Removed Characters

We remove or add p% of the characters uniformly at random in the text of Chapter 10
and Playlist 50, leaving the space characters untouched, so the number of words remains
the same. When p decreases towards −100%, it becomes likely that several characters will
be removed on each word; thus, we make sure that each word retains at least one character.
We perform the alignment of the altered text again with the audio posteriorgram.

Figure 14a shows that the alignment error on speech remains remarkably stable around
the baseline, and for up to 50% of the added/removed characters. The error increases
steadily when adding extra characters, as expected. More surprisingly, the error decreases
slightly, as compared to the baseline when removing 0–50% of the characters. One inter-
pretation is that removing some characters could be beneficial for the CTC decoding if the
model fails to recognize them properly. When more than 50% of the characters are removed,
the error increases again. Interestingly, the MAAE always remains under 200 ms, even after
each word contains only one single character. This indicates that the space character is a
very powerful anchor, and plays a crucial role in aligning the text with the posteriorgram.

Figure 14b shows that the singing aligner is much more sensitive to these kind of
character alterations. Similarly to the character replacement in the previous experiment, we
observe that the singing voice is much more sensitive than speech to the altered transcrip-
tions. As in the previous, this can be explained by the fact that anchor characters are more
ambiguous than for plain speech, which causes the optimal path to diverge more easily.

Appl. Sci. 2023, 13, 1854 19 of 26

100 75 50 25 0 25 50 75 100
Proportion of removed/added characters (in %).

0

200

400

600

800

1000

M
ea

n
ab

so
lu

te
 a

lig
nm

en
t e

rro
r (

in
 se

c.
)

Baseline=51.490s

(a)

100 75 50 25 0 25 50 75 100
Proportion of removed/added characters (in %).

0

200

400

600

800

1000

M
ea

n
ab

so
lu

te
 a

lig
nm

en
t e

rro
r (

in
 se

c.
)

Baseline=119.900s

(b).
Figure 14. Mean absolute alignment error for different percentages of removed/added characters.
(a) Speech (Chapter 10); (b) Singing (Playlist 50).

4.6.3. Effect of Added/Removed Words

Finally, we remove or add p% of the words uniformly at random in the text of Chap-
ter 10 and Playlist 50. For each added word, we first sample a length l following a normal
distribution centered around a mean length of six characters, and then generate a word of
l sampled uniformly at random in the [a–z] letters. As removed or added words are not
present in our manually aligned reference, we compute the AE only for the original words
of Chapter 10 and Playlist 50, respectively.

Figure 15a shows the speech MAAE for different values of p. It shows that the align-
ment error remains under the 200 ms error even if half of the words are missing or added.
This indicates that the alignment is very robust to noise, as long as more than half of the
true words remain untouched. Beyond that point, there are not enough words to keep the
alignment stable, and the error increases dramatically.

Similarly to the previous experiments, Figure 15b shows that the singing voice align-
ment is much more sensitive to a full word addition or deletion. As in the previous, this
can be interpreted by the fact that the posteriorgram does not exhibit sufficiently salient
probabilities for correct characters in order to provide steady anchorage compensating for
transcription errors.

100 75 50 25 0 25 50 75 100
Proportion of removed/added words (in %).

0

200

400

600

800

1000

M
ea

n
ab

so
lu

te
 a

lig
nm

en
t e

rro
r (

in
 se

c.
)

Baseline=51.490s

(a)

100 75 50 25 0 25 50 75 100
Proportion of removed/added words (in %).

0

200

400

600

800

1000

M
ea

n
ab

so
lu

te
 a

lig
nm

en
t e

rro
r (

in
 se

c.
)

Baseline=119.900s

(b)
Figure 15. Mean absolute alignment error for different percentages of removed/added words.
(a) Speech (Chapter 10); (b) Singing (Playlist 50).

4.7. Different Languages

Our models were trained for English only (both on Librispeech and DALI). In this
section, we investigate the performances of these models applied to other languages.

Appl. Sci. 2023, 13, 1854 20 of 26

4.7.1. Speech

We selected from the Librivox corpus several audiobooks in other languages than
English, listed in Table 3. For each language, the text corresponding to approximately 1 min
of audio was manually aligned by native speakers. We publicly released the audio and the
manually aligned transcript for each language (https://ircam-anasynth.github.io/papers/
2023/a-linear-memory-ctc-based-algorithm-for-text-to-voice-alignment-of-very-long-au
dio-recordings (accessed on 31 January 2023)).

For Latin alphabet languages, diacritic characters are converted to plain characters
with the python unidecode package (https://pypi.org/project/Unidecode (accessed on
31 January 2023)). For non-Latin alphabet languages, the text was first transliterated before
the synchronisation: for Chinese, we used the python pinyin package (https://pypi.org
/project/pinyin (accessed on 31 January 2023)), for Greek, we used the python polyglot
package (https://github.com/aboSamoor/polyglot (accessed on 31 January 2023)), and for
Arabic, we used a human manual transliteration. We used our system to align the text to
the audio, and summarized the results in Table 3.

Table 3. Comparing the alignment performances of our CTC-based aligner (trained in English) on
speech in different languages. * The text in these languages has been transliterated to Latin alphabet
before alignment.

Language MAAE [ms] Q50% [ms] Q95% [ms] Q99% [ms] PCO [%]

Arabic * 42 29 116 236 100
Chinese * 30 27 75 112 100
Czech 27 7 78 109 100
Dutch 79 82 124 158 100
French 49 45 97 115 100
German 25 24 54 95 100
Greek * 37 36 85 92 100
Italian 80 79 129 165 100
Spanish 77 80 137 206 100

It appears that although the system was trained in English audio and transcripts only,
it performs very well for other languages as well, including for languages that have a very
distinct pronunciation, as compared to English. We interpret these results by the fact that
the system encounters enough anchor characters (typically spaces, vowels, and consonants
that are common to English) to align the full words correctly, even though it might not be
able to recognize some particular phonemes perfectly. The variations in the MAAE between
languages is in fact mainly related to the clear or unclear articulation of the words, as can
be heard on the videos available on our companion website.

4.7.2. Singing Voice

We evaluate the singing alignment on the five most prominent languages in DALI,
which are English, French, German, Italian, and Spanish. We used a five-fold evaluation
strategy on 50 songs (the same as for our baseline Playlist 50). However, we measure the
alignment error on each song, not their concatenation as for Playlist 50, and report the
average metrics on Table 4. The DALI track IDs for these additional languages are also
available on our companion website.

https://ircam-anasynth.github.io/papers/2023/a-linear-memory-ctc-based-algorithm-for-text-to-voice-alignment-of-very-long-audio-recordings
https://ircam-anasynth.github.io/papers/2023/a-linear-memory-ctc-based-algorithm-for-text-to-voice-alignment-of-very-long-audio-recordings
https://ircam-anasynth.github.io/papers/2023/a-linear-memory-ctc-based-algorithm-for-text-to-voice-alignment-of-very-long-audio-recordings
https://pypi.org/project/Unidecode
https://pypi.org/project/pinyin
https://pypi.org/project/pinyin
https://github.com/aboSamoor/polyglot

Appl. Sci. 2023, 13, 1854 21 of 26

Table 4. Comparing the alignment performances of our CTC-based aligner (trained in English) on
singing voice in different languages.

Language MAAE [ms] Q50% [ms] Q95% [ms] Q99% [ms] PCO [%]

English 116 37 260 1501 95.7
French 2013 68 7759 44,767 78.6
German 1502 49 5807 35,435 84.1
Italian 1596 60 6628 35,557 79.9
Spanish 1571 47 6281 39,648 84.1

For English, we obtain similar results to that obtained for Playlist 50. As each song
here is evaluated individually and as it is simpler to perform a short than long alignment,
we even obtain slightly better performances. However, performances clearly degrade in
other languages. In fact, there exist extremely severe outliers (Q95% and Q99% metrics) that
naturally degrade the MAAE. When analyzing some of them, we observe cases in which the
first word of the next paragraph is predicted at the beginning of a long instrumental bridge,
or a word is emitted because of background vocals that are not part of the original transcript.

An interesting conclusion, though, is that the median error remains under 100 ms for
all languages. Since it will always be hard to account for the huge diversity existing for the
singing voice in song recordings, the median value is certainly a better metric than MAAE
to assess alignment performances in the singing voice, especially with background music.

4.8. Performance Benchmark

Alignment performance evaluations available in the literature are usually conducted
on relatively short audio durations, and, to the best of our knowledge, there is no common
evaluation set for long audio alignment. However, we provide in this subsection some
performance benchmarks.

4.8.1. Comparison with Other ASR Systems

We re-implemented the well-known ASR system Wav2Letter [33,65], and compared its
performance with our baseline model. We evaluated the speech recognition performances
on the dev-clean set of the Librispeech by means of the Character Error Rate (CER) and
Word Error Rate (WER), and the alignment performances in Chapter 10, as described in
Section 4.4, and as reported in Table 5.

The results for speech recognition are much better for Wav2Letter, which was expected,
as it was specially designed for this task and has three times more parameters than our
model. Surprisingly, however, the Wav2Letter alignment performances are not as good as
those of our model. This indicates that plain- and forced- CTC decoding provides different
optimal paths for each task at hand.

Table 5. Performance comparison of our model vs. Wav2Letter.

Librispeech Dev-Clean Chapter 10

Model # Params CER [%] WER [%] MAAE [ms] Q50% [ms]

Wav2Letter 106.5M 3.6 10.6 66 61
Ours 37.8M 8.5 26.9 51 46

Appl. Sci. 2023, 13, 1854 22 of 26

4.8.2. Comparison with Other Alignment Systems

The classical datasets used in the MIREX contest (https://www.music-ir.org/mir
ex/wiki/2020:Automatic_Lyrics-to-Audio_Alignment_Results (accessed on 31 January
2023)), i.e., Jamendo and Hansen’s datasets, only include up to 20 songs of a few minutes.
Although our system was designed to address the very long audio alignment use case, we
compared our system with the current state-of-the-art systems for the sake of completeness,
as reported in Table 6. For this experiment, our model was trained on the entire DALI
dataset, with each epoch processing the whole database. The rest of the above-mentioned
training procedure remains identical.

Table 6. Lyrics’ alignment MAAE (ms) on the Hansen (a cappella variant) and Jamendo datasets and
comparison to the latest alignment systems (MIREX 2020). ‡ We indicate best performing version
on each dataset, as reported on MIREX 2020 results (https://www.music-ir.org/mirex/wiki/2020:
Automatic_Lyrics-to-Audio_Alignment_Results (accessed on 31 January 2023)).

Hansen (a Cappella) Jamendo

System MAAE [ms] Q50% [ms] MAAE [ms] Q50% [ms]

Gao et al. [66] ‡ 87 32 217 46
Zhang et al. [67] ‡ 110 32 610 60
Demirel et al. [68] 930 946 500 85

Ours 117 44 310 46

Comparing first the results of the Jamendo dataset, we find that our system is second
in MAAE, with a Q50% value equal to the best SOTA result. For the a cappella variant
of the Hansen dataset, our system achieves results close to the second-best SOTA system.
Note that all SOTA systems involve acoustic and language models, while our system relies
on a simpler end-to-end architecture.

5. Conclusions

Popular applications such as automatic closed-captioning or karaoke generally come
to mind when mentioning text-to-voice synchronization. However, it also plays an increas-
ingly important role in the academic field by generating an automatically large corpora
of paired voice and text for downstream tasks, such as voice synthesis or speaker iden-
tity change.

Text-to-voice synchronization algorithms typically consist of two steps: an encoding
step, where a time series of symbols is inferred from the audio, and a forced-alignment step,
where these symbol timestamps are assigned to the ground-truth text. We presented in this
work a novel algorithm, where the encoding module is implemented as a fully CTC-based
convolutional network, and where the forced-alignment module is implemented as a CTC
decoder with linear memory complexity.

We demonstrated that this approach is able to align the text to several hours of audio
with a mean alignment error of 50 ms for speech, and 120 ms for the singing voice. We
also demonstrated that the system is robust for increasing audio durations, as well as
severe ground-truth text alterations, such as character and word insertions or deletions.
We interpreted these performances by the fact that the system only requires a minimal
amount of correct characters that serve as anchors to align the entire text correctly. This
also explains that the system, albeit trained solely in English text, obtains a similar accuracy
with other languages for speech and, to a lesser extent, with the singing voice.

In the future, we plan to speed up the algorithm by adapting the forced-alignment
step for GPU parallelization. We also plan to generate and publicly release a large corpora
of synchronized text and voice for future research.

https://www.music-ir.org/mirex/wiki/2020:Automatic_Lyrics-to-Audio_Alignment_Results
https://www.music-ir.org/mirex/wiki/2020:Automatic_Lyrics-to-Audio_Alignment_Results
https://www.music-ir.org/mirex/wiki/2020:Automatic_Lyrics-to-Audio_Alignment_Results
https://www.music-ir.org/mirex/wiki/2020:Automatic_Lyrics-to-Audio_Alignment_Results

Appl. Sci. 2023, 13, 1854 23 of 26

Author Contributions: Conceptualization, G.D., Y.T. and A.R.; methodology, G.D.; software, G.D.
and Y.T.; validation, G.D., Y.T. and A.R.; formal analysis, G.D.; investigation, G.D.; resources, A.R.;
data curation, G.D. and Y.T.; writing—original draft preparation, G.D. and Y.T.; writing—review
and editing, G.D., Y.T. and A.R.; visualization, G.D. and Y.T.; supervision, A.R.; project administra-
tion, A.R.; funding acquisition, A.R. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was partly funded by the French National Research Agency (Agence Na-
tionale de la Recherche—ANR) as part of the ARS project (ANR-19-CE38-0001-01).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The Librispeech dataset can be found at https://www.openslr.org/12
(accessed on 31 January 2023). The DALI dataset can be found at (https://github.com/gabolsgabs/
DALI (accessed on 31 January 2023). The evaluation dataset (Chapter 10 and Playlist 50) are available
at https://ircam-anasynth.github.io/papers/2023/a-linear-memory-ctc-based-algorithm-for-text-
to-voice-alignment-of-very-long-audio-recordings (accessed on 31 January 2023).

Acknowledgments: The authors are very thankful to (1) Christopher Tralie for fruitful discussions
about the linear memory DTW; and (2) Jan Chab, Christina Chalastanis, Alice Cohen-Hadria, Paola
Lumbroso, Klarissa Roebel, Mei-Hua Roebel, Léane Salais, Georgia Spiropoulos, and Marc Wijnand,
for manually aligning text-to-voice in their respective mother tongue.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. Viterbi, A. Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Trans. Inf. Theory

1967, 13, 260–269. [CrossRef]
2. Needleman, S.B.; Wunsch, C.D. A general method applicable to the search for similarities in the amino acid sequence of two

proteins. J. Mol. Biol. 1970, 48, 443–453. [CrossRef] [PubMed]
3. Vintsyuk, T.K. Speech discrimination by dynamic programming. Cybernetics 1968, 4, 52–57. [CrossRef]
4. Velichko, V.; Zagoruyko, N. Automatic recognition of 200 words. Int. J. Man-Mach. Stud. 1970, 2, 223–234. [CrossRef]
5. Itakura, F. Minimum prediction residual principle applied to speech recognition. IEEE Trans. Acoust. Speech Signal Process. 1975,

23, 67–72. [CrossRef]
6. Mongeau, M.; Sankoff, D. Comparison of musical sequences. Comput. Humanit. 1990, 24, 161–175. [CrossRef]
7. Orio, N.; Schwarz, D. Alignment of monophonic and polyphonic music to a score. In Proceedings of the International Computer

Music Conference (ICMC), Havana, Cuba, 17–22 September 2001.
8. Müller, M.; Kurth, F.; Clausen, M. Audio Matching via Chroma-Based Statistical Features. In Proceedings of ISMIR (International

Society for Music Information Retrieval), London, UK, 11–15 September 2005.
9. Ellis, D.P. Beat Tracking with Dynamic Programming. J. New Music. Res. 2007, 36, 51–60. [CrossRef]
10. Serrà, J.; Gómez, E. A cover song identification system based on sequences of tonal descriptors. MIREX (Music Information

Retrieval Evaluation eXchange); Citeseer: Princeton, NJ, USA, 2007, Volume 46.
11. Wagner, M. Automatic labelling of continuous speech with a given phonetic transcription using dynamic programming

algorithms. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP’81),
Atlanta, GA, USA, 30 March–1 April 1981; Volume 6, pp. 1156–1159.

12. Leung, H.; Zue, V. A procedure for automatic alignment of phonetic transcriptions with continuous speech. In Proceedings
of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP’84), San Diego, California, USA,
19–21 March 1984; Volume 9, pp. 73–76.

13. Ljolje, A.; Riley, M. Automatic segmentation and labeling of speech. In Proceedings of the IEEE International Conference on
Acoustics, Speech, and Signal Processing, Toronto, ON, Canada, 14–17 April 1991; pp. 473–476.

14. Placeway, P.; Lafferty, J. Cheating with imperfect transcripts. In Proceeding of Fourth International Conference on Spoken
Language Processing (ICSLP’96), Philadelphia, PA, USA, 3–6 October 1996; Volume 4, pp. 2115–2118.

15. Moreno, P.J.; Joerg, C.; Thong, J.M.V.; Glickman, O. A recursive algorithm for the forced alignment of very long au-
dio segments. In Proceedings of the Fifth International Conference on Spoken Language Processing, Sydney, Australia,
30 November–4 December 1998.

16. Hazen, T.J. Automatic alignment and error correction of human generated transcripts for long speech recordings. In Proceedings
of the Ninth International Conference on Spoken Language Processing, Pittsburgh, PA, USA, 17– 21 September 2006.

https://www.openslr.org/12
https://github.com/gabolsgabs/DALI
https://github.com/gabolsgabs/DALI
https://ircam-anasynth.github.io/papers/2023/a-linear-memory-ctc-based-algorithm-for-text-to-voice-alignment-of-very-long-audio-recordings
https://ircam-anasynth.github.io/papers/2023/a-linear-memory-ctc-based-algorithm-for-text-to-voice-alignment-of-very-long-audio-recordings
http://doi.org/10.1109/TIT.1967.1054010
http://dx.doi.org/10.1016/0022-2836(70)90057-4
http://www.ncbi.nlm.nih.gov/pubmed/5420325
http://dx.doi.org/10.1007/BF01074755
http://dx.doi.org/10.1016/S0020-7373(70)80008-6
http://dx.doi.org/10.1109/TASSP.1975.1162641
http://dx.doi.org/10.1007/BF00117340
http://dx.doi.org/10.1080/09298210701653344

Appl. Sci. 2023, 13, 1854 24 of 26

17. Katsamanis, A.; Black, M.; Georgiou, P.G.; Goldstein, L.; Narayanan, S. SailAlign: Robust long speech-text alignment. In
Proceedings of the Workshop on New Tools and Methods for Very-Large Scale Phonetics Research, Philadelphia, PA, USA,
29–31 January 2011.

18. Anguera, X.; Perez, N.; Urruela, A.; Oliver, N. Automatic synchronization of electronic and audio books via TTS alignment
and silence filtering. In Proceedings of the 2011 IEEE International Conference on Multimedia and Expo, Barcelona, Spain,
11–15 July 2011; pp. 1–6.

19. Hoffmann, S.; Pfister, B. Text-to-speech alignment of long recordings using universal phone models. INTERSPEECH. Citeseer.
2013; pp. 1520–1524. Available online: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=c2de617d6eeb82cba
0fe7e1453d4ab9a354d3d78 (accessed on 31 January 2023)

20. Ruiz, P.; Álvarez, A.; Arzelus, H. Phoneme similarity matrices to improve long audio alignment for automatic subtitling.
In Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC), Reykjavik, Iceland,
26–31 May 2014.

21. Álvarez, A.; Arzelus, H.; Ruiz, P. Long audio alignment for automatic subtitling using different phone-relatedness measures. In
Proceedings of the 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Florence, Italy,
4–9 May 2014; pp. 6280–6284.

22. Bordel, G.; Penagarikano, M.; Rodríguez-Fuentes, L.J.; Álvarez, A.; Varona, A. Probabilistic kernels for improved text-to-speech
alignment in long audio tracks. IEEE Signal Process. Lett. 2015, 23, 126–129. [CrossRef]

23. Gupta, C.; Yılmaz, E.; Li, H. Automatic Lyrics Alignment and Transcription in Polyphonic Music: Does Background Music Help?
In Proceedings of the ICASSP 2020—2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
Barcelona, Spain, 4–8 May 2020; pp. 496–500.

24. Mohamed, A.r.; Dahl, G.E.; Hinton, G. Acoustic modeling using deep belief networks. IEEE Trans. Audio Speech Lang. Process.
2012, 20, 14–22. [CrossRef]

25. Graves, A.; Mohamed, A.r.; Hinton, G. Speech recognition with deep recurrent neural networks. In Proceedings of the 2013
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Vancouver, BC, Canada, 26–31 May 2013;
pp. 6645–6649.

26. Hannun, A.; Case, C.; Casper, J.; Catanzaro, B.; Diamos, G.; Elsen, E.; Prenger, R.; Satheesh, S.; Sengupta, S.; Coates, A.; et al.
Deep speech: Scaling up end-to-end speech recognition. arXiv 2014, arXiv:1412.5567.

27. Kelley, M.C.; Tucker, B.V. A comparison of input types to a deep neural network-based forced aligner. Interspeech 2018. Available
online: https://era.library.ualberta.ca/items/0fbd7532-1105-4641-9e12-ebb0e349e460/download/169d5d27-d3a6-411e-ad6d-
320032130103 (accessed on 31 January 2023)

28. Backstrom, D.; Kelley, M.C.; V., T.B. Forced-alignment of the sung acoustic signal using deep neural nets. Can. Acoust. 2019, 47,
98–99.

29. Schulze-Forster, K. Informed Audio Source Separation with Deep Learning in Limited Data Settings. Ph.D. Thesis, Institut
Polytechnique de Paris, Palaiseau, France, 2021.

30. Schulze-Forster, K.; Doire, C.S.; Richard, G.; Badeau, R. Phoneme level lyrics alignment and text-informed singing voice
separation. IEEE/ACM Trans. Audio, Speech, Lang. Process. 2021, 29, 2382–2395. [CrossRef]

31. Graves, A.; Fernández, S.; Gomez, F.; Schmidhuber, J. Connectionist temporal classification: labelling unsegmented sequence
data with recurrent neural networks. In Proceedings of the 23rd International Conference on Machine Learning, Pittsburgh, PA,
USA, 25–29 June 2006; pp. 369–376.

32. Graves, A.; Jaitly, N. Towards end-to-end speech recognition with recurrent neural networks. In Proceedings of the International
Conference on Machine Learning, Beijing, China, 21–26 June 2014; pp. 1764–1772.

33. Collobert, R.; Puhrsch, C.; Synnaeve, G. Wav2letter: An end-to-end convnet-based speech recognition system. arXiv 2016,
arXiv:1609.03193.

34. Zhang, Y.; Pezeshki, M.; Brakel, P.; Zhang, S.; Bengio, C.L.Y.; Courville, A. Towards end-to-end speech recognition with deep
convolutional neural networks. arXiv 2017, arXiv:1701.02720.

35. Hori, T.; Watanabe, S.; Zhang, Y.; Chan, W. Advances in joint CTC-attention based end-to-end speech recognition with a deep
CNN encoder and RNN-LM. arXiv 2017, arXiv:1706.02737.

36. Watanabe, S.; Hori, T.; Kim, S.; Hershey, J.R.; Hayashi, T. Hybrid CTC/attention architecture for end-to-end speech recognition.
IEEE J. Sel. Top. Signal Process. 2017, 11, 1240–1253. [CrossRef]

37. Kim, S.; Hori, T.; Watanabe, S. Joint CTC-attention based end-to-end speech recognition using multi-task learning. In Proceedings
of the 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, Lousiana, USA,
5–9 March 2017; pp. 4835–4839.

38. Stoller, D.; Durand, S.; Ewert, S. End-to-end Lyrics Alignment for Polyphonic Music Using an Audio-to-Character Recognition
Model. arXiv 2019, arXiv:1902.06797.

39. Kürzinger, L.; Winkelbauer, D.; Li, L.; Watzel, T.; Rigoll, G. CTC-segmentation of large corpora for german end-to-end speech
recognition. In Proceedings of the International Conference on Speech and Computer, Online, 7–9 October 2020; Springer:
Berlin/Heidelberg, Germany, 2020; pp. 267–278.

40. Tralie, C.; Dempsey, E. Exact, parallelizable dynamic time warping alignment with linear memory. arXiv 2020, arXiv:2008.02734.

https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=c2de617d6eeb82cba0fe7e1453d4ab9a354d3d78
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=c2de617d6eeb82cba0fe7e1453d4ab9a354d3d78
http://dx.doi.org/10.1109/LSP.2015.2505140
http://dx.doi.org/10.1109/TASL.2011.2109382
https://era.library.ualberta.ca/items/0fbd7532-1105-4641-9e12-ebb0e349e460/download/169d5d27-d3a6-411e-ad6d-320032130103
https://era.library.ualberta.ca/items/0fbd7532-1105-4641-9e12-ebb0e349e460/download/169d5d27-d3a6-411e-ad6d-320032130103
http://dx.doi.org/10.1109/TASLP.2021.3091817
http://dx.doi.org/10.1109/JSTSP.2017.2763455

Appl. Sci. 2023, 13, 1854 25 of 26

41. Stoller, D.; Ewert, S.; Dixon, S. Wave-u-net: A multi-scale neural network for end-to-end audio source separation. arXiv 2018,
arXiv:1806.03185.

42. Vaglio, A.; Hennequin, R.; Moussallam, M.; Richard, G.; d’Alché Buc, F. Audio-Based Detection of Explicit Content in Music. In
Proceedings of the ICASSP 2020—2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
Barcelona, Spain, 4–8 May 2020; pp. 526–530.

43. Vaglio, A.; Hennequin, R.; Moussallam, M.; Richard, G. The words remain the same—Cover detection with lyrics transcription.
In Proceedings of ISMIR (International Society for Music Information Retrieval), Online, 7–12 November 2021.

44. Vaglio, A.; Hennequin, R.; Moussallam, M.; Richard, G.; d’Alché Buc, F. Multilingual lyrics-to-audio alignment. In Proceedings of
ISMIR (International Society for Music Information Retrieval), Montréal, Canada, 11–15 October 2020.

45. Meseguer-Brocal, G.; Cohen-Hadria, A.; Peeters, G. DALI: a large Dataset of synchronized Audio, LyrIcs and notes, automatically
created using teacher-student machine learning paradigm. In Proceedings of the 19th International Society for Music Information
Retrieval Conference, Paris, France, 23–27 September 2018.

46. Teytaut, Y.; Roebel, A. Phoneme-to-audio alignment with recurrent neural networks for speaking and singing voice. In Proceed-
ings of Interspeech 2021; International Speech Communication Association ISCA: Brno, Czechia, 30 August–3 September 2021;
pp. 61–65.

47. Salais, L.; Arias, P.; Le Moine, C.; Rosi, V.; Teytaut, Y.; Obin, N.; Roebel, A. Production Strategies of Vocal Attitudes. In Proceedings
of the Interspeech 2022, Incheon, Korea, 18–22 September 2022; pp. 4985–4989.

48. Le Moine, C.; Obin, N. Att-HACK: An Expressive Speech Database with Social Attitudes. Speech Prosody. arXiv 2020,
arXiv:2004.04410.

49. Teytaut, Y.; Bouvier, B.; Roebel, A. A study on constraining Connectionist Temporal Classification for temporal audio alignment.
In Proceedings of the Interspeech 2022, Incheon, Korea, 18–22 September 2022; pp. 5015–5019.

50. Yi, B.K.; Jagadish, H.V.; Faloutsos, C. Efficient retrieval of similar time sequences under time warping. In Proceedings of the 14th
International Conference on Data Engineering, Orlando, FL, USA, 23–27 February 1998; pp. 201–208.

51. Kim, S.W.; Park, S.; Chu, W.W. An index-based approach for similarity search supporting time warping in large sequence
databases. In Proceedings of the 17th International Conference on Data Engineering, Heidelberg, Germany, 2–6 April 2001;
pp. 607–614.

52. Keogh, E.; Ratanamahatana, C.A. Exact indexing of dynamic time warping. Knowl. Inf. Syst. 2005, 7, 358–386. [CrossRef]
53. Rakthanmanon, T.; Campana, B.; Mueen, A.; Batista, G.; Westover, B.; Zhu, Q.; Zakaria, J.; Keogh, E. Searching and mining

trillions of time series subsequences under dynamic time warping. In Proceedings of the 18th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, Beijing, China 12–16 August 2012; pp. 262–270.

54. Sakoe, H.; Chiba, S. Dynamic programming algorithm optimization for spoken word recognition. IEEE Trans. Acoust. Speech
Signal Process.. 1978, 26, 43–49. [CrossRef]

55. Chu, S.; Keogh, E.; Hart, D.; Pazzani, M. Iterative deepening dynamic time warping for time series. In Proceedings of the 2002
SIAM International Conference on Data Mining, Arlington, VA, USA, 11–13 April 2002; pp. 195–212.

56. Salvador, S.; Chan, P. Toward accurate dynamic time warping in linear time and space. Intell. Data Anal. 2007, 11, 561–580.
[CrossRef]

57. Müller, M.; Mattes, H.; Kurth, F. An efficient multiscale approach to audio synchronization. ISMIR. Citeseer, 2006; Volume 546,
pp. 192–197. Available online: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=323315c47f1fb9c39473d00
f9e417f378787d7d3 (accessed on 31 January 2023).

58. Tsai, T.; Tjoa, S.K.; Müller, M. Make Your Own Accompaniment: Adapting Full-Mix Recordings to Match Solo-Only User
Recordings. ISMIR. 2017; pp. 79–86. Available online: https://www.audiolabs-erlangen.de/content/05-fau/professor/00-muel
ler/03-publications/2017_TsaiTM_Accompaniment_ISMIR.pdf (accessed on 31 January 2023).

59. Dixon, S.; Widmer, G. MATCH: A Music Alignment Tool Chest. ISMIR. 2005; pp. 492–497. Available online: http://www.cp.jku
.at/research/papers/dixon_ismir_2005.pdf (accessed on 31 January 2023).

60. Dixon, S. Live tracking of musical performances using on-line time warping. In Proceedings of the 8th International Conference
on Digital Audio Effects, 2005; Volume 92, p. 97. Madrid, Spain, 20–22 September 2005.

61. Macrae, R.; Dixon, S. Accurate Real-time Windowed Time Warping. ISMIR. Citeseer, 2010; pp. 423–428. Available on-
line: http://www.eecs.qmul.ac.uk/~simond/pub/2010/Macrae-Dixon-ISMIR-2010-WindowedTimeWarping.pdf (accessed
on 31 January 2023).

62. Li, J.; Wang, Y. EA DTW: Early Abandon to Accelerate Exactly Warping Matching of Time Series. In Proceedings of the
International Conference on Intelligent Systems and Knowledge Engineering 2007, 2007; pp. 1200–1207. Available online:
https://www.atlantis-press.com/proceedings/iske2007/1421 (accessed on 31 January 2023).

63. Silva, D.F.; Batista, G.E. Speeding up all-pairwise dynamic time warping matrix calculation. In Proceedings of the 2016 SIAM
International Conference on Data Mining, Miami, Florida, USA, 5–7 May 2016; pp. 837–845.

64. Cont, A.; Schwarz, D.; Schnell, N.; Raphael, C. Evaluation of real-time audio-to-score alignment. In Proceedings of the
International Symposium on Music Information Retrieval (ISMIR), Vienna, Austria, 23–27 September 2007.

65. Kuchaiev, O.; Ginsburg, B.; Gitman, I.; Lavrukhin, V.; Li, J.; Nguyen, H.; Case, C.; Micikevicius, P. Mixed-precision training for
nlp and speech recognition with openseq2seq. arXiv 2018, arXiv:1805.10387.

http://dx.doi.org/10.1007/s10115-004-0154-9
http://dx.doi.org/10.1109/TASSP.1978.1163055
http://dx.doi.org/10.3233/IDA-2007-11508
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=323315c47f1fb9c39473d00f9e417f378787d7d3
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=323315c47f1fb9c39473d00f9e417f378787d7d3
https://www.audiolabs-erlangen.de/content/05-fau/professor/00-mueller/03-publications/2017_TsaiTM_Accompaniment_ISMIR.pdf
https://www.audiolabs-erlangen.de/content/05-fau/professor/00-mueller/03-publications/2017_TsaiTM_Accompaniment_ISMIR.pdf
http://www.cp.jku.at/research/papers/dixon_ismir_2005.pdf
http://www.cp.jku.at/research/papers/dixon_ismir_2005.pdf
http://www.eecs.qmul.ac.uk/~simond/pub/2010/Macrae-Dixon-ISMIR-2010-WindowedTimeWarping.pdf
https://www.atlantis-press.com/proceedings/iske2007/1421

Appl. Sci. 2023, 13, 1854 26 of 26

66. Gao, X.; Gupta, C.; Li, H. Lyrics Transcription and Lyrics-to-Audio Alignment with Music-Informed Acoustic Models. MIREX.
2021. Available online: https://www.researchgate.net/profile/Gao-Xiaoxue/publication/345628181_LYRICS_TRANSCRIPTI
ON_AND_LYRICS-TO-AUDIO_ALIGNMENT_WITH_MUSIC-INFORMED_ACOUSTIC_MODELS/links/5fa953cb92851cc28
6a08264/LYRICS-TRANSCRIPTION-AND-LYRICS-TO-AUDIO-ALIGNMENT-WITH-MUSIC-INFORMED-ACOUSTIC-MO
DELS.pdf (accessed on 31 January 2023).

67. Zhang, B.; Wang, W.; Zhao, E.; Lui, S. Lyrics-to-Audio Alignment for Dynamic Lyric Generation. Music Inf. Retrieval Eval.
eXchange Audio-Lyrics Alignment Challenge. Available online: 2022. https://www.music-ir.org/mirex/abstracts/2020/ZWZL
1.pdf (accessed on 31 January 2023).

68. Demirel, E.; Ahlback, S.; Dixon, S. A recursive Search Method for Lyrics Alignment. MIREX 2020 Audio-to-Lyrics Alignment and
Lyrics Transcription Challenge. Available online: 2020. https://www.music-ir.org/mirex/abstracts/2020/DDA3.pdf (accessed
on 31 January 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://www.researchgate.net/profile/Gao-Xiaoxue/publication/345628181_LYRICS_TRANSCRIPTION_AND_LYRICS-TO-AUDIO_ALIGNMENT_WITH_MUSIC-INFORMED_ACOUSTIC_MODELS/links/5fa953cb92851cc286a08264/LYRICS-TRANSCRIPTION-AND-LYRICS-TO-AUDIO-ALIGNMENT-WITH-MUSIC-INFORMED-ACOUSTIC-MODELS.pdf
https://www.researchgate.net/profile/Gao-Xiaoxue/publication/345628181_LYRICS_TRANSCRIPTION_AND_LYRICS-TO-AUDIO_ALIGNMENT_WITH_MUSIC-INFORMED_ACOUSTIC_MODELS/links/5fa953cb92851cc286a08264/LYRICS-TRANSCRIPTION-AND-LYRICS-TO-AUDIO-ALIGNMENT-WITH-MUSIC-INFORMED-ACOUSTIC-MODELS.pdf
https://www.researchgate.net/profile/Gao-Xiaoxue/publication/345628181_LYRICS_TRANSCRIPTION_AND_LYRICS-TO-AUDIO_ALIGNMENT_WITH_MUSIC-INFORMED_ACOUSTIC_MODELS/links/5fa953cb92851cc286a08264/LYRICS-TRANSCRIPTION-AND-LYRICS-TO-AUDIO-ALIGNMENT-WITH-MUSIC-INFORMED-ACOUSTIC-MODELS.pdf
https://www.researchgate.net/profile/Gao-Xiaoxue/publication/345628181_LYRICS_TRANSCRIPTION_AND_LYRICS-TO-AUDIO_ALIGNMENT_WITH_MUSIC-INFORMED_ACOUSTIC_MODELS/links/5fa953cb92851cc286a08264/LYRICS-TRANSCRIPTION-AND-LYRICS-TO-AUDIO-ALIGNMENT-WITH-MUSIC-INFORMED-ACOUSTIC-MODELS.pdf
https://www.music-ir.org/mirex/abstracts/2020/ZWZL1.pdf
https://www.music-ir.org/mirex/abstracts/2020/ZWZL1.pdf
https://www.music-ir.org/mirex/abstracts/2020/DDA3.pdf

	Introduction
	Related Works
	CTC-Based Modeling for the Encoding Step
	Optimized DTW for the Alignment Step

	Method
	The Textbook DTW Alignment Algorithm
	Definitions
	* Computation via Dynamic Programming

	Linear Memory DTW Algorithm
	Principle
	Pivot Search
	Pivot Search on dk and dk-1
	Diagonal Computation with Linear Memory Complexity

	The CTC Alignment Algorithm
	Definitions
	p(l|x) Computation via Dynamic Programming
	CTC-Forced Alignment

	Linear Memory CTC Alignment
	Pivot Search
	Pivot Search on dk, dk-1, and dk-2
	 and R Computation Diagonal-Wise

	Neural Architecture
	Inputs
	Architecture
	Output

	Experiments and Results
	Model Training
	Speech
	Singing voice

	Reference Corpora
	Speech
	Singing Voice

	Evaluation Metrics
	Baseline Results
	Effect of Audio Duration and Number of Words on Performances
	Effect of Text Transcription Errors on Performances
	Effect of Replaced Characters
	Effect of Added/Removed Characters
	Effect of Added/Removed Words

	Different Languages
	Speech
	Singing Voice

	Performance Benchmark
	Comparison with Other ASR Systems
	Comparison with Other Alignment Systems

	Conclusions
	References

